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Preface

The rudiment of Arakelov’s theory comes from discussing the volume of lattices of num-
ber fields, using Minkowski’s theory. By some non-geometric technologies, we can prove
the Serre duality theorem and the Riemann-Roch theorem of a ring of algebraic integers
(geometrically speaking, this is a 1-dimensional curve), but these formulas come from al-
gebraic geometry. This implies that our algebraic number theory should have a geometric
interpretation, and its high-dimensional version should contain more abundant arithmetic
information. This geometry was later called Arakelov geometry.

The serious Arakelov theory of surfaces was established by Arakelov [Arak] in 1974.
It is a kind of intersection theory connecting algebraic geometry and complex geome-
try. Then, in 1984, Faltings gave an arithmetic Riemann-Roch formula using Arakelov’s
theory [Falt], this showed that Arakelov geometry is powerful.

In 1990, Gillet and Soulé developed the Arakelov intersection theory on general arith-
metic varieties [GiS1], and in 1992, they extended the arithmetic Riemann-Roch formula
by using this theory [GiS2]. In 2008, their subsequent work with Rössler [GRS], proved
the formula in the case of higher degrees.

We assume that the readers are familiar with algebraic geometry, differential geome-
try and algebraic number theory. Although this note does not presuppose knowledge of
complex geometry, it is better if you master it.
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Chapter 1

Curves and Number Theory

In this chapter, we introduce the so-called "geometry of numbers", which studies fraction-
al ideals of number fields by embedding them into the field of complex numbers. One of
the most important theorems in this theory is the Riemann-Roch formula for arithmetic
varieties.

1.1 Fractional Ideals and Invertible Sheaves

Let K be a number field, write X := Spec(OK). There are three ways to study the primes
in OK :

• Number theoretically. A fractional ideal of K is a OK-submodule of K of rank 1, a
principal fractional ideal of K is a fractional ideal has form xOK for some x∈K×.
Define the ideal class group of K to be

Cl(OK) := {fractional ideals of K}/{principal fractional ideals of K},

with the usual multiplication of ideals. The inverse of a fractional ideal a in this
group is a−1 := {x ∈ K : xa⊆ OK}.

• Geometrically. Consider the scheme X , by a invertible sheaf (or a line bundle)
we mean a rank 1 locally free OX -module on X . For a scheme X we can define a
Picard group

Pic(X) := isomorphism classes of invertible sheaves on X ,

with the multiplication given by tensor product. The inverse of a invertible sheaf is
obtained by dualizing.

• Geometrically. Consider the scheme X . A divisor on X is a codimension 1 sub-
scheme of X . Since X has Krull dimension 1, a divisor must be a finite formal
sum of some closed points in X . A principal divisor on X is a divisor has form
∑p ordp(x)p for some x ∈ K×. Define the divisor class group

CH1(X) := {divisors on X}/{principal divisors on X},

1



2 CHAPTER 1. CURVES AND NUMBER THEORY

with the addition given by the formal sum. The inverse of a divisor is added a minus
sign.

Algebraic geometry tells us the second and third methods are essentially the same.
That is, studying the codimension 1 closed subschemes is equivalent to studying the line
bundles. Indeed, the above three methods are all equivalent.

Proposition 1.1.1. There are isomorphisms

Cl(OK)∼= Pic(X)∼= CH1(X)∼= K×
\
A×K
/

Ô×K K×∞ ,

where A×K is the group of units in the ring of adeles of K, and

Ô×K := ∏
v finite

O×Kv
× ∏

v infinite
{1}, K×∞ := ∏

v finite
{1}× ∏

v infinite
K×v .

Proof. We only give the definitions of these maps.

• Since X is affine, we have Cl(OK)∼= Pic(X).

• Cl(OK)∼= CH1(X) is given by ∏p p
−np ↔ ∑p np p.

• The map K×
\
A×K
/

Ô×K K×∞ ∼= Cl(OK) is given by (xv)v↔∏v finite p
nv
v , where pv is

the prime ideal corresponding to v and nv is the v-adic valuation of xv.

The remaining work is for you.

Remark 1.1.2. The map from the Picard group Pic(X) to the divisor class group
CH1(X) is called the first Chern class, this map is given by taking "zeros minus poles" of
some rational global section of a invertible sheaf. Its inverse D 7→ OX (D) can be defined
as we will do in Chapter 2.1.

Recall we have the product formula

∏
v finite

|x|v = ∏
v infinite

|x|−1
v

for all x ∈ K×. It implies that, in the premise of satisfying this formula, in order to obtain
a "compactification" of X in a certain sense, some information at infinite places can be
added to the divisors defined previously. This is the original idea of Arakelov’s theory.

Definition 1.1.3. Let us make some definitions in parallel.

• Number theoretically. We use the adelic version of Cl(OK) to generalize the def-
inition. That is, we define the Arakelov class group to be the locally compact
group

Ĉl(OK) := K×
\
A×K
/

Ô×K O×∞ ,

where O×∞ is the maximal compact subgroup of K×∞ .
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• Geometrically. Consider the scheme X . A metrized invertible sheaf (L ,∥ · ∥τ)
(or a metrized line bundle) is a invertible sheaf L together with a collection of
non-trivial norms (hence induce Hermitian inner products) ∥ · ∥τ on 1-dimensional
complex linear spaces L ⊗τ C for each embedding τ ∈Hom(K,C), invariant under
the action of complex conjugation. Define the arithmetic Picard group of X to be

P̂ic(X) := isometry classes of metrized line bundles on X .

• Geometrically. Consider the scheme X . An Arakelov divisor on X is an element
in the group

Ẑ1(X) := {divisors on X}⊕

 ⊕
τ∈Hom(K,C)

R

Gal(C/R)

,

where Gal(C/R) acts by τ → τ . Inside this group, we form a subgroup

R̂1(X) :=

{
d̂iv(x) :=

(
∑
p

ordp(x)p,(− log |τ(x)|2)τ

)
: x ∈ K×

}
.

The quotient group ĈH
1
(X) := Ẑ1(X)/R̂1(X) is called the arithmetic Chow group.

For the Arakelov case, we have a conclusion similar to Proposition 1.1.1.

Proposition 1.1.4. There are isomorphisms

Ĉl(OK)∼= P̂ic(X)∼= ĈH
1
(X).

Proof. We still only give the definitions of the maps.

• The isomorphism P̂ic(X)
∼→ ĈH

1
(X) is given by

(L ,∥ · ∥τ) 7→ d̂iv(s) :=

(
∑
p

np p,(− log∥sτ∥2
τ)τ

)

for some rational global section s of L , where sτ ∈L ⊗τ C is the pull-back of s by
τ , and np is the order of vanishing of s at p.

• To construct an isomorphism from P̂ic(X) to Ĉl(OK), suppose we have a metrized
line bundle (L ,∥ · ∥τ) on X . Choose a rational section s of L , we associate s an
idele (

(ϖnv
v )v finite,(∥sτ∥τ)τ infinite

)
,

where ϖv is a uniformizer of Kv and nv is the order of vanishing of s at v.

The remaining work is for you.
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The map from P̂ic(X) to ĈH
1
(X) is called the first arithmetic Chern class.

If we take K =Q in Definition 1.1.3, then Ĉl(Z) is actually a Shimura variety relative
to the Shimura datum (GL1,{pt}) with arithmetic subgroup {±1}. Moreover, there is a
natural isomorphism

Log : Ĉl(Z) =Q×
\
A×Q
/(

Ẑ
×
×{±1}

) ∼−→ R, (xv)v 7−→ ∑
p<∞

ordp(xp) log p− log |x∞|.

This map induces maps ĈH
1
(Spec(Z))→ R and P̂ic(Spec(Z))→ R by Proposition

1.1.4. Based on this, we can define the most important invariant of metrized line bundles:
the Arakelov degree map (here just only provide the definition in the case of curves, and of
course, it can be generalized to higher dimensions using push-forward and the arithmetic
Riemann-Roch formula).

Definition 1.1.5 (Arithmetic Degree). For a metrized line bundle (L ,∥ · ∥τ) on X ,
then L is a fractional ideal of OK . Take 0 ̸= s ∈L , define

d̂eg(L ,∥ · ∥τ) := log#(L /s ·OK)− ∑
τ∈Hom(K,C)

log∥sτ∥τ ∈ R,

where sτ ∈ L ⊗τ C is the pull-back of s by τ . By product formula, this definition is
independent of the choice of s.

Exercise 1.1.6. Verify the arithmetic degree d̂eg : ĈH
1
(Spec(Z))→ R is given by(

∑
p

np[p],n∞

)
7→∑

p
np log p+

n∞

2
.

1.2 Riemann-Roch Theorem
In this section we will show the proof of the arithmetic Riemann-Roch formula for curves.

Let K be a number field and OK be its ring of integers, write X := Spec(OK), define
KR :=

(
∏τ∈Hom(K,C)C

)Gal(C/R) ∼= K⊗QR.
Fix an Arakelov divisor

(
∑p np p,(rτ)τ

)
. By Proposition 1.1.4, it corresponds to a

metrized line bundle

L =

(
∏
p

p−np ,
(
∥1τ∥τ = e−

1
2 rτ
)

τ

)
.

Put Lfin :=
(

∏p p
−np ,(1)τ

)
and Linf :=

(
(1),(e−rτ/2)τ

)
. Define a map

j : K→ KR, x 7→ (τ(x))τ ,

then j(Lfin) is a lattice in KR. On the other hand, Linf induces a linear map

ρL : KR→ KR, (sτ)τ 7→
(
e−rτ/2sτ

)
τ

of R-linear spaces.
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Definition 1.2.1 (Characteristic). Define a map

χ̂ : P̂ic(X)→ R, L 7→ − log
(
vol
(
KR
/
(ρL ◦ j(Lfin))

))
,

call it the arithmetic Euler characteristic.

Exercise 1.2.2. Verify this definition is well-defined, i.e. χ̂ depends only on the class
in Ẑ1(X).

Let OX =
(
(1),(1)τ

)
be the trivial invertible sheaf with the standard metric. The

corresponding Arakelov divisor is
(
(0),(0)τ

)
.

Lemma 1.2.3. χ̂(OX ) =− log
√
|disc(K/Q)|.

Proof. Let e1, · · · ,en be an integral basis, then the lattice j(OX ,fin) is spanned by the vec-
tors (τ1(e j), · · · ,τn(e j)) for j = 1, · · · ,n, where τi ∈Hom(K,C) are embeddings. One can
compute the volume is vol(KR/ j(OX ,fin)) = |det(τi(e j))i j|=

√
|disc(K/Q)|.

Now we obtain the most important formula in this section:

Theorem 1.2.4 (Arithmetic Riemann-Roch). For any L ∈ P̂ic(X), we have

χ̂(L )− χ̂(OX ) = d̂eg(L ).

Proof. Suppose L =
(

∏p p
−np ,(e−rτ/2)τ

)
, then

d̂eg(L ) = ∑
p

np log#k(p)+∑
τ

rτ
2
.

Consider the sublattice j(Lfin) of j(OX ,fin), it defines a linear endomorphism Θ : KR→KR
such that Θ◦ j(OX ,fin) = j(Lfin). Thus

|det(Θ)|= [ j(OX ,fin) : j(Lfin)] =
[
OK : ∏

p

p−np
]
= ∏

p

#k(p)−np .

Using this, we compute

χ̂(L ) =− log
(
vol
(
KR
/
(ρL ◦ j(Lfin))

))
=− log

(
vol
(
KR
/
(ρL ◦Θ◦ j(OX ,fin))

))
=− log

(
det(ρL ) ·det(Θ) ·vol(KR/ j(OX ,fin))

)
= ∑

τ

rτ
2
+∑

p

np log#k(p)+ χ̂(OX ),

as desired.

Remark 1.2.5. The arithmetic Riemann-Roch formula also studies the behavior of
the push-forward of a metrized line bundle, or equivalently speaking, compute how push-
forward affects the arithmetic degree. The so-called push-forward is the map

π∗ : P̂ic(X)→ P̂ic(Spec(Z)) or π∗ : ĈH
1
(X)→ ĈH

1
(Spec(Z))
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induced by π : X → Spec(Z), which is coincide with the norm map in algebraic number
theory.

Indeed, for a metrized line bundle L on Spec(OK), there is an equality

d̂eg(π∗L ) = d̂eg(L )− log
√
|disc(K/Q)|.

So there is no reason why d̂eg and π∗ should commute, the commutativity issue is a well-
known problem in algebraic geometry: Grothendieck-Riemann-Roch Theorem.



Chapter 2

Surfaces and Arakelov Theory

In this chapter, we introduce the Arakelov theory of surfaces developed by Arakelov and
Faltings.

2.1 Riemann Surfaces
Let X be a compact Riemann surface.

Definition 2.1.1 (Weil Functions). Let D = {(U, f )} be a Cartier divisor on X . A
Weil function associated with D is a map

λD : X \Supp(D)→ R,

such that for every P∈U \Supp(D), λD(P) =− log | f (P)|+α(P) for some smooth func-
tion α : U → R.

The function α here will be viewed as a metric. Note that λD(P) = ∞ is not well-
defined when P ∈ Supp(D).

Definition 2.1.2 (Néron Functions). Let D = {(U, f )} be a Cartier divisor on X ,
consider the triple (U, f ,α) where α : U→R is smooth. We say two triples (U, f ,α) and
(V,g,β ) are compatible, if

• (U, f ),(V,g) ∈ D. This implies f/g ∈ OX (U ∩V )×.

• − log | f/g|= β −α holds on U ∩V .

A maximal family of compatible triples is called a Néron divisor, denoted by D =
{(U, f ,α)}. All Néron divisors form an abelian group via

(U, f ,α) · (V,g,β ) := (U ∩V,( f g)|U∩V ,(α +β )|U∩V ).

For a Néron divisor D = {(U, f ,α)}, define the Weil function associated with D to be

λD(P) :=− log | f (P)|+α(P), P ∈U \Supp(D).

Néron divisors can be viewed as "metrized" Cartier divisors.

7



8 CHAPTER 2. SURFACES AND ARAKELOV THEORY

Exercise 2.1.3. λD is independent of the choice of triple.

Recall that there is a natural way to identify line bundles (or invertible sheaves) on X
with Cartier (or Weil) divisors on X . Our goal is to make this correspondence metrically.
Let us first review some geometric operations.

Let L be a line bundle on X , i.e. X =
∪

i Ui such that for each i, ϕi : L |Ui
∼→ OX |Ui is

an isomorphism of OX |Ui -module, and satisfies

L |Ui∩U j

ϕ j

��

id // L |Ui∩U j

ϕi

��
OX |Ui∩U j

∼

ϕi j :=ϕi◦ϕ−1
j ∈OX (Ui∩U j)

×
// OX |Ui∩U j

These functions ϕi are called trivialization functions. In particular, if D = {(Ui, fi)}
is a Cartier divisor, then the line bundle associated with D

OX (D)(U) := { f ∈M (U) : div( f )+D≥ 0}, U ⊆ X

has a well-known trivialization(
Ui, fi× (·) : OX (D)|Ui

∼→ OX |Ui

)
.

Definition 2.1.4 (Metrics). Let L be a line bundle on X and has trivialization L =
{(U,ϕ)}. Let h : U → R>0 be smooth functions, consider the triples (U,ϕ ,h). We say
two triples (U,ϕ ,h) and (V,ψ,m) are compatible, if

h(P) = |ϕ ◦ψ−1(P)|2 ·m(P), P ∈U ∩V.

A maximal family of compatible triples is called a metric on L , denoted by (L ,h). We
also call it a metrized line bundle.

Remark 2.1.5. Let L = {(U,ϕ)} be a line bundle on X . Let s ∈ Γ(U,L ) be a
section, for P ∈U , define a norm (hence induces a Hermitian inner product) on the one
dimensional C-linear space LP (i.e. the fiber of L at P) to be

∥s(P)∥h :=
|ϕP(s(P))|√

h(P)
.

This number does not depend on the choice of trivialization. It is easy to see that h and
∥ · ∥h are determine each other, so we will abuse them.

Remark 2.1.6. There are many ways to construct new metrized line bundles.

• Let (L ,h) = {(U,ϕ ,h)} be a metrized line bundle on X , define the dual bundle
(L −1,h−1) := {(U,ϕ−1,h−1)}.

• Let (L ,h) = {(U,ϕ ,h)}, (M ,m) = {(U,ψ,m)} be metrized line bundles on X ,
define the tensor bundle (L ⊗M ,h ·m) := {(U,ϕ ·ψ,h ·m)}.
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• Let f : X → Y be a morphism and (L ,h) = {(U,ϕ ,h)} be a metrized line bundle
on Y , then the pull-back bundle f ∗L has a metric defined by ( f ∗L ,h ◦ f ) =
{( f−1U, f ♯ ◦ ϕ ,h ◦ f )}, where f ♯ : OY → f∗OX and the trivialization f ∗L → OX
comes from the adjoint pair ( f ∗, f∗).

Proposition 2.1.7. Let D = {(U, f )} be a Cartier divisor on X, then there is a one-
to-one correspondence:

{metrics on OX (D)}←→ {Weil functions associated with D},

given by h 7→ (− log | f |+ 1
2 logh); (λD =− log | f |+α) 7→ e2α .

Proof. Let s = (U,s|U ∈M (U)) be a meromorphic global section of OX (D) such that
div(s) = D, we already know there is a natural trivialization

f × (·) : OX (D)|U
∼→ OX |U , s|U 7→ f · s|U .

For a metric h on OX (D), define a function associated with s by

λh,s(P) :=− log∥s(P)∥h =− log
| f (P) · s|U (P)|√

h(P)
=− log | f (P) · s|U (P)|+

1
2

logh(P).

Now take s = 1D and suppose (Supp(D)c,1) ∈ D, then log | f (P) · s|U (P)| vanishes, one
can verify the bijection easily.

In fact, the metric on a vector bundle reflects some geometrical and topological infor-
mation of this bundle. We now introduce the Chern form of a metric, which can be viewed
as an important characteristic class in the cohomology group. This class can be obtained
from curvature in differential geometry.

But first, let us recall some notations. Let z = x+ iy be a local complex coordinate.
Define the differential operators

∂
∂ z

:=
1
2

(
∂
∂x
− i

∂
∂y

)
;

∂
∂ z

:=
1
2

(
∂
∂x

+ i
∂
∂y

)
.

For a smooth function f , define ∂ f := ∂ f
∂ z dz∈A 1,0, ∂ f := ∂ f

∂ z dz∈A 0,1 and d := ∂ +∂ ∈
A 1, dc := 1

4πi (∂ −∂ ) ∈A 1.

Exercise 2.1.8. Prove:

∂∂ =−∂∂ =−2πiddc =− i
2

(
∂ 2

∂x2 +
∂ 2

∂y2

)
dx∧dy ∈A 1,1.

Remark 2.1.9. This is a warning. Let (X ,g) be a n dimensional projective complex
manifold with Kähler metric g and its volume form volg ∈ A 2n. It is unreasonable to
use Exercise 2.1.8 to define the Laplacian on X , since ∑2n

i=1
∂ 2

∂x2
i

can not carry metric in-
formation and may not glue into a global operator. But from linear algebra, g induces a
Hermitian inner product g̃ on

∧k T ∗X , the space of k-forms, 0 ≤ k ≤ 2n. Now define the
L2-scalar product

⟨·, ·⟩g : A k×A k→ C, ⟨ω,η⟩g 7→
∫

X
g̃(ω,η) ·volg.
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If we write the right adjoint of d for ⟨·, ·⟩g as d∗, one can define the Laplacian ∆dR :=
dd∗+ d∗d, called the Laplace-de Rham operator. In Euclidean plane, this Laplacian
coincides with the ordinary one (up to a sign).

Definition 2.1.10 (Chern Forms). Let (L ,h) = {(U,ϕ ,h)} be a metrized line bundle
on X , let s be a holomorphic section on U . Define the Chern form of (L ,h) to be

c1(L ,h) := ddc logh(z) =−ddc log∥s(z)∥2
h, z ∈U \Supp(div(s)).

Its cohomology class in the de Rham cohomology group H2
dR(X) is called the Chern

class, also denoted by c1(L ,h).

Since the transition functions are holomorphic non-zero, it follows that one can glue
c1(L ,h) into a global form in A 1,1.

Remark 2.1.11. In complex geometry, let E be a Hermitian vector bundle on a
complex manifold X . For each P ∈ X , the fiber EP is a finite dimensional C-linear space
and has a Hermitian inner product

⟨·, ·⟩P : EP×EP→ C.

Suppose E has a frame {ei} composed of global sections. There are some important
matrices:

• The metric matrix H := [⟨ei,e j⟩] ∈Mat0-form
n . It is not hard to see H = HT .

• The connection matrix W ∈Mat1-form
n . Let

∇ : Γ(U,E)→ Γ(U,T ∗X⊗E)∼= Γ(U,Hom(T X ,E))

be the connection induced by H, then W := [wi j] is defined by ∇e j = ∑n
i=1 wi jei.

One can show that W = H−1∂ (H).

• The curvature matrix Ω = dW +W ∧W = ∂ (∂ (H) ·H−1)T ∈Mat2-form
n , by Bianchi

identity.

If E is a line bundle, then Ω =−∂∂ (logH). This explains why we define Chern forms in
a strange expression.

Proposition 2.1.12. Let (L ,h) be a metrized line bundle on X, then∫
X

c1(L ,h) = deg(L ).

Proof. Let s be a meromorphic section, so c1(L ,h) = −ddc log∥s(z)∥2
h outside the sup-

port of div(s). At each point P where s has a zero or pole, we pute a small circle C(P,r) of
radius r. Represent ∥s(z)∥2

h = f f g where f is meromorphic at P and g is smooth positive,
apply Stokes’ formula we have

∫
X

c1(L ,h)= lim
r→0

∑
P

∫
C(P,r),y

dc log∥s(z)∥2
h = lim

r→0
∑
P

∫
C(P,r),y

∂ −∂
4πi

(log f +log f +logg).
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the logg term is bounded locally so the integral of this term tends to 0. Obviously,
∂ log f = ∂ log f = 0, so the integral becomes∫

X
c1(L ,h) =

1
4πi

lim
r→0

∑
P

2iIm
∫

C(P,r),y

f ′

f
dz = ∑

P
ordP( f ) = deg(L ),

as desired.

Exercise 2.1.13. Let [x : y] ∈ P1(C), define a metric

h : C×→ R>0, [x : y] 7→ |x|2 + |y|2.

• If x ̸= 0, then z := [x : y] = [1 : y
x ] ∈ C. Show the metric h in this coordinate is

z 7→ 1+ |z|2.

• Find the line bundle where h lives in.

• If we consider ddc logh ∈ A 1,1 as a measure, this defines a Hermitian metric on
P1(C), called the Fubini-Study metric. Find the curvature of this metric and which
line bundle where the metric lives in (recall the degree of holomorphic tangent
bundle on P1(C) is 2).

2.2 Green Functions and Metrics
Let X be a compact Riemann surface. In this section, we study a special case of Weil
functions on X , which are Green functions.

If the genus g of X is bigger than 0, define the canonical volume form on X to be

µ :=
i

2g

g

∑
k=1

ωk ∧ωk ∈A 1,1,

where ω1, · · · ,ωg are orthonormal basis for the Hermitian inner product

Γ(X ,Ω1
X/C)×Γ(X ,Ω1

X/C)→ C, ⟨ω ,η⟩ 7→ i
2

∫
X

ω ∧η .

One can check that
∫

X µ = 1.

Definition 2.2.1 (Green Functions). A Green function (of logarithmic type) with
respect to µ is a function g : X×X →R smooth outside the diagonal ∆(X)⊆ X×X , and
satisfying the following conditions:

Fix a point P ∈ X ,

• Any affine open neighbourhood U of P with local coordinate z, we have

g(P,z) =− log |z−P|2 + real smooth function in z, z ∈U \{P}.

• For all points z ̸= P,
∂∂g(P,z) =−2πiµ.
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•
∫

X
g(P,z)µ = 0.

One can prove that the Green function exists uniquely.

Remark 2.2.2. In the case of genus g = 0, i.e. X = P1(C) a Riemann sphere, define
a Green function on P1(C) in terms of the affine coordinates (z,w) by

g(z,w) :=− log
|z−w|2

(1+ zz)(1+ww)
,

up to an appropriate additive constant. This function with respect to the Fubini-Study
form

µ :=
i

2π
dz∧dz
(1+ zz)2 ∈A 1,1.

There is an important formula:

Proposition 2.2.3. Let X be a compact Riemann surface. For all smooth real-valued
functions f on X, ∫

X
g(P,z)ddc f + f (P) =

∫
X

f µ .

Exercise 2.2.4. Let C(P,r) be a neighborhood of P of radius r, show that:

• If g ∈ C ∞(C(P,r)) and f = γ logh+C ∞-function for some constant γ , then

lim
r→0

∫
C(P,r),x

f dcg = 0.

• If g = logh2 +C ∞-function and f is continuous, then

lim
r→0

∫
C(P,r),x

f dcg = f (P).

Proof. (of Proposition). Write gP := g(P, ·), we calculate directly∫
X
(gPddc f − f µ) =

∫
X
(gPddc f − f ddcgP) (µ = ddcgP)

=
∫

X
d(gPdc f − f dcgP) (d f ∧dcg = dg∧dc f )

= lim
r→0

∫
C(P,r),y

(gPdc f − f dcgP) (Stokes’ formula)

= lim
r→0

∫
C(P,r),x

f dcgP− lim
r→0

∫
C(P,r),x

gpdc f (Exercise 2.2.4)

=− f (P),

as desired.

Let ω ∈A p,q (0≤ p,q≤ 1), define some linear operators

[ω] : A 1−p,1−q→ R, η 7→
∫

X
ω ∧η
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and
δP : C ∞→ R, f 7→ f (P).

Define ddc[ω](η) := −[ω](ddcη), write gP := g(P, ·), then the previous proposition can
be expressed as the equality of operators (afterwards, they will be called currents):

ddc[−gp]+δP = [µ].

Exercise 2.2.5. Let Pj ( j = 1,2) be two different points, write gPj := g(Pj, ·) are
Green functions with respect to µ . Show

gP1(P2)−gP2(P1) =
∫

X
(gP1ddcgP2 −gP2 ddcgP1) = 0.

It reminds us to consider the compact complex manifold X ×X and the diagonal di-
visor ∆(X). One can choose an appropriate metric h on OX×X (∆(X)) such that if s is a
section of OX×X (∆(X)) with div(s) = ∆(X), then − log∥s∥2

h is the Green function with
respect to µ on X . This means that in the neighborhood of ∆(X) in X ×X , on has the
expansion

g(z,w) =− log |z−w|2 + real analytic function in (z,w).

So we can study the analytic properties of Green functions locally in X×X .

Remark 2.2.6. The Green functions can be used to define metrics on line bundles
on X , under the requirements of Proposition 2.1.12 since Green functions are special Weil
functions.

• We first consider the case of degree one line bundle OX (P) for some prime divisor
P ∈ X . Let 1P be a meromorphic section of OX (P) which is constant outside P, due
to Proposition 2.1.7 one can define

∥1P(z)∥ := exp
(
−1

2
g(P,z)

)
, z ̸= P.

• For the case of general line bundle

OX (D) =
⊗

P

OX (P)

where D = ∑P P. Let 1D be a meromorphic section of OX (D) which is constant
outside D, due to Remark 2.1.6 one can define

∥1D(z)∥ := exp

(
−1

2 ∑
P

g(P,z)

)
, z ̸= Supp(D).

We usually write ∑P g(P,z) as g(D,z).

These metrics are derived from the Green function and are the metrics used in Arakelov
geometry. We will emphasize them in the following sections.

Exercise 2.2.7. Under the assumption of Remark 2.2.6, verify Proposition 2.1.12.
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2.3 Arakelov Intersection Pairing

Let K be a number field and OK its ring of integers. An arithmetic variety X is an integral,
regular, projective, flat scheme over OK with generic fiber XK = X ×OK K is smooth (not
necessarily connected) over K. So

X(C) :=
⊔

τ∈Hom(K,C)
Xτ(C), where Xτ(C) := complex points of XK×τ C,

is a family of compact Riemann surfaces.
An arithmetic variety with Krull dimension 2 will be called an arithmetic surface.

The Arakelov theory of arithmetic surfaces is important because it can be calculated di-
rectly and used as important examples.

Definition 2.3.1 (Arakelov Divisors). Let X be an arithmetic surface. Define the
group of Arakelov divisors on X is the group

D̂iv(X) := Div(X)⊕

 ⊕
τ∈Hom(K,C)

R ·Xτ(C)

Gal(C/R)

,

where Div(X) denotes the group of Weil divisors on X and the Galois group Gal(C/R)
acts on the infinite part by τ 7→ τ . Thus, an Arakelov divisor on X is an expression of the
type D = Dfin +Dinf.

Definition 2.3.2 (Principal Arakelov Divisors). Let f ∈ k(X)×. We associate an
Arakelov divisor to f in the following way

d̂iv( f ) := ( f )fin +( f )inf,

where ( f )fin is the principal Weil divisor div( f ) associated with f and

( f )inf := ∑
τ∈Hom(K,C)

(
−gτ(div( fτ),z)

2
− log | fτ(z)|

)
·Xτ(C),

where gτ is the unique Green function on Xτ(C) with respect to the canonical volume
form µτ on Xτ(C) invariant under Gal(C/R), and fτ is the pull-back of f by Xτ(C)→ X .

Exercise 2.3.3. Check the coefficients in the sum above

γτ( f ) :=−gτ(div( fτ),z)
2

− log | fτ(z)|

are constant functions in z.

These principal Arakelov divisors form a subgroup of D̂iv(X), the quotient group is

denoted by ĈH
1
(X ,{µτ}) or simply ĈH

1
(X), called the arithmetic Chow group of X .

Arakelov proved that there exists an intersection theory on an arithmetic surface:
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Theorem 2.3.4 (Arakelov). Let X be an arithmetic surface defined over OK , the
intersection number at a closed point x ∈ X is denoted by ix(·, ·). With these notations,
there exists a unique symmetric bilinear pairing

(·, ·) : D̂iv(X)× D̂iv(X)→ R,

satisfying the following conditions:

• (FINITE DIVISOR, FINITE DIVISOR): (D, vertical divisor E lies over a finite prime
p) =

∑
x|p

ix(D,E) log#k(x).

• (FINITE DIVISOR, FINITE DIVISOR): (horizontal divisor D, horizontal divisor
E) = (D,E)fin +(D,E)inf, where

(D,E)fin = ∑
p∈Spec(OK)

∑
x|p

ix(D,E) log#k(x); (D,E)inf = ∑
τ∈Hom(K,C)

1
2

gτ(Dτ ,Eτ).

• (FINITE DIVISOR, INFINITE DIVISOR): (horizontal divisor D, Xτ(C)) = deg(D).

• (FINITE DIVISOR, INFINITE DIVISOR): (vertical divisor D, Xτ(C)) = 0.

• (INFINITE DIVISOR, INFINITE DIVISOR): (Xτ(C),Xσ (C)) = 0.

• (PRINCIPAL DIVISOR, ANY DIVISOR): (principal Arakelov divisor, ·) = 0. There-

fore the pair D̂iv(X)× D̂iv(X)→ R defines a symmetric bilinear form on ĈH
1
(X).

Proof. (only prove the last item). For example, given a horizontal divisor D = Dfin, write
Dτ = ∑deg(D)

i=1 Pi,τ such that each Pi,τ is prime. We have

(d̂iv( f ),D)

=(( f )fin,D)+(( f )inf,D)

=(( f )fin,D)fin +(( f )fin,D)inf + ∑
τ∈Hom(K,C)

γτ( f )deg(D)

= ∑
p∈Spec(OK)

− log

(
∏
x|p

∣∣ f |D∣∣x
)
+ ∑

τ∈Hom(K,C)

gτ(div( fτ),Dτ)

2
+ ∑

τ∈Hom(K,C)
γτ( f )deg(D)

= ∑
p∈Spec(OK)

− log
∣∣Nmk(D)/K( f |D)

∣∣
p
+ ∑

τ∈Hom(K,C)

(
gτ(div( fτ),Dτ)

2
+

deg(D)

∑
i=1

γτ( f )

)

= ∑
τ∈Hom(K,C)

(
log
∣∣τ (Nmk(D)/K( f |D)

)∣∣+ deg(D)

∑
i=1

(
gτ(div( fτ),Pi,τ)

2
+ γτ( f )

))

= ∑
τ∈Hom(K,C)

(
log

∣∣∣∣∣τ
(

∏
φ∈Gal(k(D)/K)

φ( f |D)

)∣∣∣∣∣− log

∣∣∣∣∣τ
(

deg(D)

∏
i=1

fτ(Pi,τ)

)∣∣∣∣∣
)
.

The last term is 0 by Galois theory.
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Exercise 2.3.5. Let K = Q,OK = Z, so there is a unique embedding τ : Q ↩→ C.
Suppose X = P1

Z, and the Green function g on Xτ(C) is given by Remark 2.2.2, let D =

d̂iv(x2 +1), E = the closed subscheme defined by the prime ideal (x+2), show that:

• (Dfin,E)fin = i(5,x+2)(x2 +1,x+2) log5 = log5.

• (Dfin,E)inf =
1
2 (g(i,−2)+g(−i,−2)−2g(∞,−2)) = log 2

5 .

• γτ(x2 +1) =− log2. Hence the intersection number (D,E) = 0.

We can also identify Arakelov divisors with admissible metrized line bundles on an
arithmetic surface, as in algebraic geometry. The metrized line bundle on an arithmetic
variety X is a rank one locally free OX -module L together with a collection of non-trivial
metrized line bundles

(
[Xτ(C)→ X ]∗L ,∥ · ∥τ

)
on compact complex manifolds Xτ(C),

τ ∈ Hom(K,C), and invariant under Gal(C/R).
Now let

D = Dfin + ∑
τ∈Hom(K,C)

rτ ·Xτ(C)

be an Arakelov divisor on an arithmetic surface. Define a metrized line bundle associated
with D to be

ÔX (D) :=
(

OX (Dfin),

{∥∥1Dfin,τ(z)
∥∥

τ := exp
(
−1

2
gτ(Dfin,τ ,z)− rτ

)})
.

Because of the correspondence between Arakelov divisors and "admissible" line bun-
dles (admissible means the line bundle has form ÔX (D) when D is an Arakelov divisor),
one can transplant the intersection theory of divisors to the intersection theory of line
bundles. Therefore, when discussing intersections on an arithmetic surface later, we will
abuse divisors and admissible line bundles. For example,

Proposition 2.3.6. Let D = Dfin +Dinf be an Arakelov divisor on an arithmetic sur-
face X defined over OK , and let E be a horizontal prime divisor has form Spec(Ok(E))

with residue field k(E). Then (D,E) = d̂eg(ÔX (D)|E). The right hand side can be viewed
as (ÔX (D),E).
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Proof. Write Dfin = {(U, f )},Dinf = ∑τ rτ ·Xτ(C), choose a special rational section 1Dfin ,
we can compute

d̂eg(ÔX (D)|E)

=d̂eg
(

OX (Dfin)|E ,
{∥∥1Dfin,τ(Eτ)

∥∥
τ = exp

(
−1

2
gτ(Dfin,τ ,Eτ)− rτ deg(E)

)})
= log#

(
OX (Dfin)|E

/
Ok(E)

)
− ∑

τ∈Hom(k(E),C)
log∥1Dfin,τ(Eτ)∥τ

= ∑
p∈E

ordp( f |E) log#k(p)+ ∑
τ∈Hom(k(E),C)

(
1
2

gτ(Dfin,τ ,Eτ)+ rτ deg(E)
)

=(Dfin,E)fin +(Dfin,E)inf +(Dinf,E).

The last term is (D,E) by Theorem 2.3.4.

2.4 Adjunction Formula
Recall that the classicial adjunction formula in algebraic geometry states that let f : X →
Y,g : Y → Z be quasi-projective local complete intersection (l.c.i, to abbreviate) mor-
phisms, then we have a canonical isomorphism

ωX/Z
∼= ωX/Y ⊗OX f ∗ωY/Z ,

where ω are relative canonical sheaves. This formula can be understood by differential
geometry.

Let Y be a 2 dimensional compact complex manifold, and let X be a 1 dimensional
regular submanifold of Y . For each P ∈ X , there are two linear spaces TPX ⊆ TPY . The
complementary of TPX in TPY means all normal vectors of X at P relative to Y . In the
language of sheaf theory, there is an exact sequence of sheaves on X

0→ (Ω1
X/C)

∨→ (Ω1
Y/C|X )

∨→N orX/Y → 0,

where Ω1
(·)/C means the sheaf of holomorphic 1-forms, i.e. the holomorphic cotangent

sheaf of (·), it is a locally free O(·)-module with rank equal to the dimension of (·). Take
dual and take determinant of this sequence, we get

ωX/Y :=
2∧

Ω1
Y/C|X ∼= Ω1

X/C⊗N or∨X/Y = ωX/C⊗N or∨X/Y .

If one can show N orX/Y
∼= OY (X)|X , then the adjunction formula

ωX/C ∼= ωX/Y ⊗OY (X)|X

holds and can be generalized to general cases. In algebraic geometry, one can study these
sheaves locally, just use commutative algebra on each affine open subset.

Exercise 2.4.1. Let X be a 1 dimensional regular submanifold of a 2 dimensional
compact complex manifold Y . Define the conormal sheaf N or∨X/Y on X of i : X ↩→ Y to
be i∗(I /I 2), where I := OY (−X) (a line bundle). Show that:
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• i∗(I /I 2)∼= i∗I , and so N or∨X/Y
∼=OY (−X)|X . You can check this locally: given

a commutative ring A and an ideal I, there is an isomorphism I/I2⊗A A/I ∼= I⊗A
A/I ∼= I/I2.

• In particular, let Y = X ×X and let i : X ↩→ X ×X be the diagonal embedding.
Now i∗(I /I 2) ∼= Ω1

X/C. Locally, for a C-algebra A, assume I is the kernel of
A⊗C A→ A,a1⊗ a2 7→ a1a2 and set a A-module structure a(a1⊗ a2) := aa1⊗ a2
on it. Define

Ω1
A/C :=

free A-module generated by the symbols da,a ∈ A
⟨d(a1 +a2)−da1−da2,d(a1a2)−a1da2−a2da1 : ai ∈ A⟩

.

Recall that Ω1
X/C|U = ˜Ω1

OX (U)/C for any affine open subset U ⊆ X, so the isomor-
phism we want is locally given by

Ω1
A/C

∼→ I/I2, da 7→ [a⊗1−1⊗a].

Let X be an arithmetic surface defined over OK . We will show that there is an analogy
in Arakelov geometry.

Definition 2.4.2 (Dualizing Sheaves). Let π : X → OK be a flat, projective, l.c.i.
morphism. Let i : X ↩→ Y be an immersion into Y and Y is smooth over OK . Consider the
following diagram

X

π   A
AA

AA
AA

A
� � i // Y

p
��

OK

Analogous to the previous discussion, we define the relative canonical sheaf of π to be

ωX/OK := det(i∗Ω1
Y/OK

)⊗OX det(N orX/Y ),

where Ω1
Y/OK

:= ∆∗(I /I 2) and I := OY×OK Y (−∆(Y )), ∆ : Y → Y ×OK Y .

Sometimes we call ωX/OK the dualizing sheaf with respect to π , and abbreviate it as
ωπ . It can be shown that dualizing sheaf is independent of the choice of the decomposition
X ↩→ Y → OK up to isomorphisms.

Remark 2.4.3. Let ωπ be a dualizing sheaf with respect to π , then one can find a
trace morphism trπ : H ·(X ,ωπ)→ OK , such that for all coherent sheaves F on X , the
natural pairing

HomOX (F ,ωπ)×H ·(X ,F )−→ H ·(X ,ωπ)
trπ−→ OK

followed by trπ gives an isomorphism HomOX (F ,ωπ)
∼→ HomOK (H

·(X ,F ),OK).

Example 2.4.4. The concept of dualizing sheaves in number theory is corresponds
to the codifferents. Let L/K be a finite extension of number fields and let θ : Spec(OL)→
Spec(OK) be the induced morphism. Now we have ωθ ∼= HomOK (OL,OK), since

HomOL(·,HomOK (OL,OK))∼= HomOK (·,OK) = HomOK (H
0(Spec(OL), ·),OK).
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Recall that in algebraic number theory there is an isomorphism{
y ∈ L : trL/K(yOL)⊆ OK

} ∼→ HomOK (OL,OK), y 7→ trL/K(y·).

So the dualizing sheaf ωOL/OK in this case is just the codifferent CL/K of a field extension.

Let us do Arakelov geometry now. Let τ ∈ Hom(K,C), also write τ : Xτ(C)→ X .
Then by base-change, on Xτ(C) we have τ∗ωX/OK

∼= Ω1
Xτ (C)/C. So there is an admissible

metric on Ω1
Xτ (C)/C = ∆∗OXτ (C)×Xτ (C)(−∆(Xτ(C))), since we have the Green function on

the right hand side.

Proposition 2.4.5 (Arithmetic Adjunction Formula). Let E be a horizontal prime
divisor on an arithmetic surface X defined over OK . Suppose E has form Spec(Ok(E)),
then(

ω̂X/OK ⊗ ÔX (E),E
)
= log#

(
Ck(E)/K

/
Ok(E)

)
+

1
2 ∑

τ∈Hom(k(E),C)
∑
i ̸= j

gτ(Pi,τ ,Pj,τ),

where Eτ = ∑deg(E)
j=1 Pj,τ .

Proof. We have ωE/OK
∼= C̃k(E)/K by Example 2.4.4. On the other hand, note that i : E ↩→

X is a closed regular immersion, so ωE/OK = i∗ωX/OK ⊗N orE/X by classical adjunction
formula. But i∗OX (E)∼= N orE/X , therefore

ωE/OK
∼=
(
ωX/OK ⊗OX (E)

)∣∣
E .

Now use Proposition 2.3.6 to compute(
ω̂X/OK ⊗ ÔX (E),E

)
= d̂eg(ω̂E/OK ) = log#

(
Ck(E)/K

/
Ok(E)

)
− ∑

τ∈Hom(k(E),C)
log∥1τ∥τ .

By Remark 2.2.6, the metric on Ω1
Xτ (C)/C⊗OXτ (C)(Eτ) at Pj,τ is

∥1(Pj,τ)∥τ = exp

(
−1

2 ∑
i ̸= j

gτ(Pi,τ ,Pj,τ)

)
.

It only needs to run out all j.

2.5 Faltings-Riemann-Roch Theorem
Recall that the Riemann-Roch formula for a line bundle L on a Riemann surface X is

χ(L ) := dimH0(X ,L )−dimH1(X ,L ) = 1−genus(X)+deg(L ).

In this section, we will introduce the analogy of this formula in Arakelov geometry.
Let V be a C-linear space of dimension n, define det(V ) :=

∧n V . For L a line bundle
on a genus g > 0 Riemann surface X , let

λ (RΓ(X ,L )) :=HomC
(

det(H1(X ,L )),det(H0(X ,L ))
)

∼=det(H0(X ,L ))⊗det(H1(X ,L ))∨.
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The object of this section will be to discuss volume forms on the formal difference
H0(X ,L )−H1(X ,L ), i.e. Hermitian inner product on λ (RΓ(X ,L )), when L is a
metrized line bundle (we discard symbols ∥ · ∥ or h for simplicity) discussed in Remark
2.2.6, and discuss how these volume forms (Hermitian inner product) give rise to an Euler
characteristic χ(L ) with desirable properties, e.g. for which one has a Riemann-Roch
formula.

Let D be a divisor on X , and let P ∈ X be a point. There is an exact sequence

0→ OX (D)→ OX (D+P)→ CP→ 0.

The metrics on OX (D) and OX (D+P) give rise to a metric on Γ(X ,CP), is simply the
restriction of the metric on OX (D+P) to the fiber at P. However, this metric is depend on
D, so we write CP as CP(D) to emphasize this.

One has H1(X ,CP(D)) = 0, so there is a long exact sequence

0→ Γ(X ,OX (D))→ Γ(X ,OX (D+P))→ Γ(X ,CP(D))→
→ H1(X ,OX (D))→ H1(X ,OX (D+P))→ 0.

Exercise 2.5.1. Show that:

• Let
0→ A1→ A2→ ··· → An→ 0

be a long exact sequence of finite dimensional C-linear spaces, then(⊗
i≥0

det(A2i+1)

)
⊗

(⊗
i≥1

det(A2i)
∨

)
∼= C.

• The long exact sequence above gives an isomorphism

λ (RΓ(X ,OX (D+P)))∼= λ (RΓ(X ,OX (D)))⊗Γ(X ,CP(D)).

Faltings proved the following result in 1984 (here we omit the proof):

Proposition 2.5.2 (Faltings). There is a unique way to assign to each admissible
metrized line bundle L (admissible means the metric on L comes from Remark 2.2.6) on
X a Hermitian inner product on λ (RΓ(X ,L )) such that the following properties hold:

• An isometry of metrized line bundles induces an isometry of the corresponding
λ (RΓ(X ,L )).

• If the metric on L is changed by a factor C > 0, then the metric on λ (RΓ(X ,L ))
is changed by Cχ(L ).

• The metrics on λ (RΓ(X ,L )) are compatible with the metrics on CP(D), in the
following sense: Suppose D and D+P are divisors on X, then the isomorphsim

λ (RΓ(X ,OX (D+P)))∼= λ (RΓ(X ,OX (D)))⊗Γ(X ,CP(D))

is an isometry.
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• The metric on λ (RΓ(X ,Ω1
X/C))

∼=
∧g(Γ(X ,Ω1

X/C)) is the one determined by the

Hermitian inner product Γ(X ,Ω1
X/C)×Γ(X ,Ω1

X/C)→ C, ⟨ω,η⟩ 7→ i
2
∫

X ω ∧η .

Let us do Arakelov geometry now.

Definition 2.5.3. Let M be a finitely generated Z-module, suppose on M⊗ZR we
have a Haar measure. Define

χ̂Z(M) :=− log
(
vol(M⊗ZR/M)

/
#Mtor

)
.

In the case of Z-module OK when K is a number field, we choose the normalized Haar
measure on OK⊗ZR to be the one such that vol(OK⊗ZR/OK) =

√
|disc(K/Q)|.

The following definition generalizes Definition 2.5.3, since disc(Q/Q) = 1.

Definition 2.5.4. Let M be a finitely generated OK-module, define

χ̂K(M) := χ̂Z(M)− rankOK (M) · χ̂Z(OK).

We need a lemma to summarize some properties of bundles on an arithmetic surface.

Lemma 2.5.5. Let X be an arithmetic surface defined over OK . For any coherent
sheaf F on X, we have:

• H i(X ,F ) = 0 for i≥ 2.

• Denote i : OK ↩→ K, then H ·(X ,F )⊗OK K ∼= H ·(XK , i∗F ). Furthermore, if τ ∈
Hom(K,C), then H ·(X ,F )⊗τ C∼= H ·(Xτ(C),τ∗F ).

Proof. We compute the first one by using Čech cohomology. After localizing OK at
its primes, we are reduced to the case when R is a discrete valuation ring. Since X is
projective over R, there exist homogeneous polynomials f1, · · · , fn with coefficients in R
such that

X ∩ [ f1 = 0]∩·· ·∩ [ fn = 0] is empty.

Now X is covered by affine open subsets f j ̸= 0 for 1≤ j ≤ n, so Ȟ i(X ,F ) = 0 for i≥ 2.
The second item is followed by flat base-change, since K and C are flat over OK .

Let X be an arithmetic surface defined over OK . For an admissible metrized line
bundle L , we only need to consider H0(X ,L ) (resp. H0(Xτ(C),τ∗L )) and H1(X ,L )
(resp. H1(Xτ(C),τ∗L )) by Lemma 2.5.5.

For any embedding τ ∈ Hom(K,C), we naturally have λ (RΓ(Xτ(C),τ∗L )), and by
Proposition 2.5.2 it admits a Hermitian inner product, i.e. a volume form on the formal
difference

H0(Xτ(C),τ∗L ))−H1(Xτ(C),τ∗L )).

By Lemma 2.5.5, this induces a Haar measure on

H0(X ,L )⊗τ C−H1(X ,L )⊗τ C.

This Haar measure is compatible with complex conjugation, so in fact there is a Haar
measure on

H0(X ,L )⊗OK R−H1(X ,L )⊗OK R.

Combine these with Definition 2.5.3, we make the following definition.
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Definition 2.5.6. Let L be an admissible metrized line bundle on an arithmetic
surface X defined over OK , define

χ̂(L ) := χ̂K(H0(X ,L ))− χ̂K(H1(X ,L )).

The main theorem is:

Theorem 2.5.7 (Faltings-Riemann-Roch). For L an admissible metrized line bun-
dle on an arithmetic surface X defined over OK , one has the following Riemann-Roch
formula

χ̂(L )− χ̂(OX ) =
1
2
(L ,L −ωX/OK ),

where OX is equipped with the standard metric.

Proof. (proof sketch). Let D be an Arakelov divisor on X such that L is isometric to
ÔX (D). Let K′/K be a finite extension, write ϕ : X ′ := X ×OK Spec(OK′)→ X . We wish
to show that both sides of the Riemann-Roch formula are multiplied by [K′ : K] if X , OK
and D are replaced by X ′, OK′ and ϕ ∗(D). So the Riemann-Roch formula holds under
base-change.

When D is the trivial divisor, there is nothing to say. By passing to a suitable extension
K′, we are reduced to checking that both sides of the formula change by the same amount
when we add to D a divisor of the following kinds:

• A real multiple of an infinite fibre of X .

• An irreducible component of a fibre of X → OK at a closed point of Spec(OK).

• The image of a section s : Spec(OK)→ X .

Some of them are deduced from the arithmetic adjunction formula.



Chapter 3

Higher Arakelov Geometry

In this chapter, we introduce the arithmetic intersection theory on arithmetic varieties
developed by Gillet and Soulé.

3.1 Some Intersection Theory and K-Theory
There is an important model establishes the intersection theory locally:

Remark 3.1.1. Let R be a noetherian regular local ring with residue field k. A finitely
generated R-module has finite length if and only if it is supported at the closed point of
Spec(R). By dévissage, the K0 of the category of modules of finite length is isomorphic
to the K0 of the category of k-linear spaces, i.e. to Z. Now let M,N are finitely generated
R-modules (hence have finite length), the supports of which intersect only at the closed
point of Spec(R). Serre defines their intersection multiplicity

i(M,N) := ∑
k≥0

(−1)kℓ(TorR
k (M,N)).

This formula will be served as the standard model for the general intersection theory.

Let X be a noetherian, regular, separated scheme of dimension d defined over a noethe-
rian ring.

For any p ∈ Z≥0, denoted by X (p) the set of points of codimension p in X . Let Zp(X)
be the free abelian group generated by X (p), the elements in it are called p-cycles. Two
p-cycles Z1,Z2 are called rationally equivalent if there exist finitely many functions fi ∈
k(yi)

×, yi ∈ X (p−1) such that
Z2−Z1 = ∑

i
div( fi),

where
div( fi) = ∑

x∈X(p)∩{yi}
ordO{yi},x

( fi) · {x}.

Definition 3.1.2 (Chow Groups). The p-th Chow group CHp(X) of X is the quotient
group

CHp(X) := Zp(X)/rational equivalence.

23
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For a closed subscheme Y ⊆ X we define Zp
Y (X) as the group of cycles of codimension p

on X supported in the closed subset attached to Y , then define

CHp
Y (X) := Zp

Y (X)/⟨div( f ) : f ∈ k(y)×,y ∈ X (p−1)∩Y ⟩,

call it the Chow group of codimension p of X with supports in Y .

Definition 3.1.3 (Intersections). Two cycles Y ∈ Zp(X),Z ∈ Zq(X) intersect prop-
erly, if codimX (Y ∩Z) = p+ q. Assume Y,Z intersect properly, define the intersection
multiplicity ix(Y,Z) for x ∈ Y ∩Z∩X (p+q) is the integer

ix(Y,Z) := ∑
k≥0

(−1)kℓOX ,x(TorOX ,x
k (OY,x,OZ,x)).

Write (·)Q := (·)⊗Z Q (the reason for tensor Q is given by K-theory). The main
conclusions of this section are as follows.

Theorem 3.1.4. Let Y,Z be closed subschemes of X, then there exists a bilinear
pairing

(·, ·) : CHp
Y (X)Q×CHq

Z(X)Q→ CHp+q
Y∩Z(X)Q

satisfying the following properties:

•
⊕

Y
⊕

p CHp
Y (X)Q is a commutative ring with unit [X ] ∈ CH0(X).

• It is compatible with change of supports CHp
Y (X)Q→ CHp

Y ′(X)Q associated to in-
clusions Y ⊆ Y ′.

• For [Y1] ∈ CHp
Y (X), [Z1] ∈ CHp

Z(X) with Y1,Z1 intersect properly, we have

([Y1], [Z1]) 7→

 ∑
x∈Y1∩Z1∩X(p+q)

ix(Y1,Z1) · {x}

 .
In particular, there exists a unique pairing

CHp(X)Q⊗CHq(X)Q→ CHp+q(X)Q

such that for Y ∈ Zp(X),Z ∈ Zq(X) interesting properly, we have

([Y ], [Z]) 7→

[
∑

x∈Y∩Z∩X(p+q)

ix(Y,Z) · {x}

]
.

The pairing above is given by tensor product of bundles in K0 group. So if we want to
prove this theorem, we need to introduce some K-theory.

Definition 3.1.5 (Grothendieck Groups). Let Y be a closed subscheme of X . Define:

• K0(X) to be the Grothendieck group of coherent locally free OX -modules (i.e.
finite dimensional vector bundles). More precisely,

K0(X) :=
the free abelian group generated by coherent locally free OX -modules

⟨F ′−F +F ′′ : 0→F ′→F →F ′′→ 0 exact⟩
.
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• K′0(X) to be the Grothendieck group of coherent OX -modules.

• KY
0 (X) to be the Grothendieck group of bounded complexes of locally free OX -

modules acyclic outside Y modulo quasi-isomorphisms and (F.′−F.+F.′′) if there
is an exact sequence 0→ F.′→ F.→ F.′′→ 0.

Since our X is regular, K0(X)∼= K′0(X). The map from K′0(X) to K0(X) is given by the
finite and locally free resolution

0→Fn→ ··· →F1→F0→F → 0

of a coherent OX -module F , for this we can send [F ] to ∑n
i=0(−1)i[Fi].

We now review some facts in algebraic geometry, but omit the proof.

Proposition 3.1.6. Let Y,Z (not necessarily regular) be closed subschemes of X,
their closed immersions to X are denoted as i.

• (Excision Theorem). There is an exact sequence K′0(Y )→ K′0(X)→K′0(X \Y )→ 0.

• There is a bilinear pairing

KY
0 (X)×KZ

0 (X)→ KY∩Z
0 (X), ([F.], [G.]) 7→ [Tot(F.⊗G.)],

where the total complex of a double complex F.⊗G., F.= {Fi,di},G.= {G j,δ j},
is defined by

Tot(F.⊗G.) :=


(⊕

i+ j=n

Fi⊗G j

)
n

,
⊕

i+ j=n

(
di⊗ id+(−1)iid⊗δ j

) .

• There is an isomorphism K′0(Y )
∼→ KY

0 (X), [F ] 7→ [F.], where F. is a finite free
resolution of i∗F .

• (Projection Formula). Let f : X → X ′ be a proper morphism. The homomor-
phism f ∗ : K0(X ′)→ K0(X), [F ′] 7→ [ f ∗F ′] and the homomorphism f∗ : K′0(X)→
K′0(X

′), [F ] 7→ ∑i(−1)i[Ri f∗F ] satisfy the formula

f∗( f ∗[F ′]⊗ [F ]) = [F ′]⊗ f∗[F ], for [F ] ∈ K′0(X), [F ′] ∈ K0(X ′).

In order to state Theorem 3.1.4 using K-theory, we make the following definition.

Definition 3.1.7. On KY
0 (X) we define a decreasing filtration

KY
0 (X) = F0KY

0 (X)⊇ F1KY
0 (X)⊇ ·· · ⊇ FdKY

0 (X)⊇ Fd+1KY
0 (X) = {0}

by
F pKY

0 (X) :=
∪

Z⊆Y,codimX Z≥p

im
(

KZ
0 (X)→ KY

0 (X)
)
.

Define GrpKY
0 (X) := F pKY

0 (X)/F p+1KY
0 (X).

Theorem 3.1.8. Using the terminologies above,
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• F pKY
0 (X)Q ·FqKZ

0 (X)Q ⊆ F p+qKY∩Z
0 (X)Q, given by take the total complex of the

tensor product double complex in Proposition 3.1.6.

• Let Z ∈ Zp
Y (X) be an irreducible cycle, then we can take a finite locally free resolu-

tion of i∗OZ . This induces an isomorphism CHp
Y (X)Q

∼→ GrpKY
0 (X)Q.

Proof. (of Theorem 3.1.4). It is not hard to see that Theorem 3.1.8 implies Theorem 3.1.4,
since on Gr·K0(X)Q we can do tensors naturally. The intersection number ix(·, ·) comes
from Proposition 3.1.6, because we can define a bilinear pairing

K′0(Y )×K′0(Z)→ K′0(Y ∩Z), ([F ], [G ]) 7→∑
k
(−1)k[Hk(Tot(P.⊗Q.))],

where P.→ i∗F → 0, Q.→ i∗G → 0 are free resolutions of OX -modules (here i de-
notes the closed immersion to X). By homological algebra we have Hk(Tot(P.⊗Q.))∼=
T orOX

k (i∗F , i∗G ), so the intersection number ix(Y,Z) will be defined to be the local in-
formation at x ∈ Y ∩ Z of the image of ([OY ], [OZ ]). Since T or and i∗ commute with
colimits, this is the alternating sum of the lengthes of the stalks at x of Tor sheaves, due to
Remark 3.1.1.

Note that the complex

· · · → 0→ 0→ i∗F ⊗ i∗G → 0→ 0→ ···

is isomorphic to i∗F ⊗Q. or P.⊗ i∗G in the derived category, so the right hand side of
the map above is equal to [i∗F ⊗ i∗G ] in K′0(X). Therefore the intersection bilinear form
is "almost" the tensor product of OX -modules.

Remark 3.1.9. When X is a smooth variety over a field, the Chow groups can also
be defined by using sheaf cohomology. The Bloch’s formula tells us that there is an
isomorphism:

CHp(X)∼= H p
(

X ,
(
U 7→ πp+1BQ{finitely generated projective OX (U)-module}

)†
)
,

where † means sheafification, Q means add some arrows to the category, B means ge-
ometric realization (to make a category into a topological space) and πp+1 means the
(p+ 1)-th homotopy group. Some technical tools can be found in Quillen’s higher K-
theory and homotopy theory.

We will give a proof sketch of Theorem 3.1.8. Some preparation is needed.

Definition 3.1.10 (λ -Rings). A λ -ring is a unitary ring R with operations λ k : R→ R
(k ≥ 0), satisfying

• λ 0 = 1; λ 1 = id; λ k(1) = 0(∀k > 1).

• λ k(x+ y) = ∑k
i=0 λ i(x) ·λ k−i(y).

• λ k(xy) = Pk(λ 1(x), · · · ,λ k(x);λ 1(y), · · · ,λ k(y)), where Pk is a integral coefficient
polynomial in 2k variables s.t. Pk(e1, · · · ,ek; f1, · · · , fk) is the coefficient of tk in the
expression ∏k

i=1 ∏k
j=1(1+ txiy j), where e1, · · · ,ek (resp. f1, · · · , fk) are elementary

symmetric polynomials in x1, · · · ,xk (resp. y1, · · · ,yk).
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• λ k(λ l(x)) = Qk,l(λ 1(x), · · · ,λ kl(x)), where Qk,l is a integral coefficient polyno-
mial in kl variables s.t. Qk,l(e1, · · · ,ekl) is the coefficient of tk in the expres-
sion ∏1≤i1<i2<···<ik≤kl(1+ txi1xi2 · · ·xik), where e1, · · · ,ekl are elementary symmet-
ric polynomials in x1, · · · ,xkl .

Note that Pk,Qkl are not depend on R.

Exercise 3.1.11. P1(x;y) = xy; P2(x,y;z,w) = x2w+ z2y−2yw.

The concept of λ -rings comes from the analogy of operations on vector bundles. In-
deed, we can roughly view (K0,+,⊗,∧) as a λ -ring with unit is the trivial bundle [O].

Exercise 3.1.12. If on X = P1(C) there is

k∧(
OX (l)⊕n)= OX (kl)⊕Φ(n,k),

find Φ(n,k). In particular,
∧n(OX (l)⊕n) = OX (nl).

Definition 3.1.13 (Adams Operators). Write λt(x) := ∑k≥0 λ k(x)tk. Put

ψ−t(x) :=− t
λt(x)

· dλt(x)
dt

,

and ψt(x) := ∑k≥1 ψk(x)tk. The operators ψk : R→ R are called the Adams operators on
the λ -ring R.

There is an important principle in algebraic topology, called the splitting principle.
That is, to check universal relations among operations on λ -rings, it is sufficient to check
these on elements of the form x = x1 + · · ·+ xn with λ k(xi) = 0 for all k > 1, i = 1, · · · ,n.
This is because for a vector bundle E on X , there is a tautological exact sequence on PE

0→ OPE(−1)→ π∗E→ Quot→ 0,

where π : PE→ X , whose fiber at a point x∈ X is the usual projective space of lines in the
fiber Ex. The fact is that [π∗E] completely determines [E] on X and rank(Quot)< rank(E),
so one can continue this process by induction. Finally we get some line bundles from E.
Since in the K0 group we modulo exact sequences, the splitting principle is reasonable.

Proposition 3.1.14. Let ψk (k ≥ 1) be Adams operators on a λ -ring R.

• ψk are ring endomorphisms.

• ψk ◦ψ l = ψkl = ψ l ◦ψk.

• ψk = Newk(λ 1, · · · ,λ k), where Newk is the k-th Newton polynomial.

Proof. We only prove the first one. Obviously, λt(x+ y) = λt(x) ·λt(y), so ψk preserves
addition. To check ψk preserves multiplication, we use splitting principle. Let x,y ∈ R
with λ k(x) = λ k(y) = 0 for all k > 1, hence λ k(xy) = 0 for all k > 1. Then λt(xy) = 1+txy
and therefore ψ−t(xy) = −txy

1+txy . This implies ψt(xy) = ∑k≥1(txy)k, so ψk(xy) = (xy)k =

ψk(x)ψk(y).
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Exercise 3.1.15. There is a unique λ -ring structure on Z, given by

λ k : Z→ Z, n 7→
(

n
k

)
= dim

(
k∧
Q⊕n

)
.

The Adams operators on this λ -ring are ψk = id for all k ≥ 1. Check this.

Proof. (proof sketch of Theorem 3.1.8). We take the following steps.

• (Fact i). There exists a functorial λ -ring structure on
⊕

Y⊆X KY
0 (X) such that λ k

maps KY
0 (X) to itself for every k ≥ 0. Note that this does not mean that KY

0 (X)
has an induced λ -ring structure, in fact it may not have a unit. In particular, if
X = Spec(R) and Y = Spec(R/(a)), then

ψk : KY
0 (X)→ KY

0 (X), [Σa] := [· · · → 0→ R a→ R→ 0→ ··· ] 7→ k · [Σa].

• (Fact ii). Let A be a commutative ring, write K·(A) instead of K·(Spec(A)). In
particular, if A = F is a field, then

K0(F)∼= Z,
K1(F)∼= F×,

K2(F)∼= F×⊗Z F×
/
⟨x⊗ (1− x) : x ∈ F× \{1}⟩.

The Adams operators ψk act on K0(F) by id, on K1(F) by multiplication by k.
Here, the higher K-theory appears, but beyond this proof, we will not use it.

• (Claim iii). Let Y ⊆ X be a closed subscheme with codimension p, then there exists
an exact sequence

0−→ F p+1KY
0 (X)−→ KY

0 (X)−→
⊕

V∈Y∩X(p) closed

KV
0 (OX ,V )−→ 0.

Proof. Since X is regular, by Proposition 3.1.6 we have for Z ⊆ Y a closed sub-
scheme, there is an exact sequence

0−→ im
(
KZ

0 (X)→ KY
0 (X)

)
−→ KY

0 (X)−→ KY\Z
0 (X \Z)−→ 0.

Take colimit over all closed subschemes Z ⊆ Y with codimension ≥ p+1, we get

0−→ F p+1KY
0 (X)−→ KY

0 (X)−→ lim−→
Z⊆Y,codimX Z≥p+1

KY\Z
0 (X \Z)−→ 0.

The colimit in the sequence above is
⊕

V∈Y∩X(p) closed

KV
0 (OX ,V ).

• (Fact iv). Fix k ≥ 2. For i ≥ 0, denote KY
0 (X)[i] := {x ∈ KY

0 (X)Q : ψk(x) = kix}
(it does not depend on the choice of k by Proposition 3.1.14, but this fact is not
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trivial). Then we have (i.e. the action of ψk is diagonalizable with eigenvalues in
{k0, · · · ,kd})

F pKY
0 (X)Q ∼=

⊕
i≥p

KY
0 (X)[i].

This was first proven by Grothendieck. The idea of proof is to use descending in-
duction on codimX (Y ). To start with, let Y be a closed point, then KY

0 (X)∼=K′0(Y )∼=
K0(k(Y ))∼= Z (this is not a λ -ring, otherwise, it will contradict Exercise 3.1.15), so
we only need to check the action of ψk on some element is multiplication by kd .
This is given by (Fact i), since one can compute ψk

([⊗d
i=1 Σai

])
= kd

[⊗d
i=1 Σai

]
for some ai. To prove the general case, one should use (Claim iii).

• (Claim v). F pKY
0 (X)Q ·FqKZ

0 (X)Q ⊆ F p+qKY∩Z
0 (X)Q.

Proof. Let x ∈ F pKY
0 (X)Q and y ∈ FqKZ

0 (X)Q, by (Fact iv) we have x = ∑i≥p xi

with xi ∈ KY
0 (X)[i] and y = ∑ j≥q y j with y j ∈ KZ

0 (X)[ j]. Therefore xy = ∑i, j xiy j

with ψk(xiy j) = ki+ jxiy j for i+ j ≥ p+q. So xy ∈ F p+qKY∩Z
0 (X)Q.

• (Fact vi). The higher K groups fit a spectral sequence, its E1 page is

E p,q
1,Y (X) =

{⊕
x∈Y∩X(p) K−p−q(k(x)), p≥ 0, p+q≤ 0,

0, otherwise.

In particular, (Fact ii) implies E p−1,−p
1,Y (X) ∼=

⊕
y∈Y∩X(p−1) k(y)× and E p,−p

1,Y (X) ∼=⊕
x∈Y∩X(p) Z∼= Zp

Y (X).
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0

// E1,0
0 E1,−2

1

d1��

E1,−1
1

��

0

��

E1,−2
2 E1,−1

2 0

E2,−2
0

// E2,−1
0

// E2,0
0 E2,−2

1 0 0 E2,−2
2 0 0

The maps d1 in the E1 page are

d1 :
⊕

y∈Y∩X(p−1)

k(y)×→ Zp
Y (X), ( fy) 7→∑

y
div( fy).

It is easy to see Zp
Y (X)/im(d1)∼= CHp

Y (X), i.e. E p,−p
2,Y (X)∼= CHp

Y (X). Similarly,

E p−1,−p
2,Y (X)∼=

( fy) ∈
⊕

y∈Y∩X(p−1)

k(y)× : ∑
y

div( fy) = 0


/

im(d′1).
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• (Fact vii). There are λ -ring structures λ k : E p,q
r,Y (X)→ E p,q

r,Y (X), and they converge
to λ k : KY

−p−q(X)→ KY
−p−q(X). For the isomorphisms in (Fact vi)

ε :
⊕

x∈Y∩X(p)

K−p−q(k(x))
∼→ E p,q

1,Y (X),

the Adams operators ψk satisfy ψk ◦ ε = kp · ε ◦ψk.

This is proven by using Quillen’s higher K-theory to compute cohomology groups.

• (Claim viii). E p,−p
2,Y (X)Q ∼= GrpKY

0 (X)Q.

Proof. (Fact vii) implies that ψk acts on E p−1,−p
r,Y (X) by multiplication by kp, on

E p−1+r,−(p−1+r)
r,Y (X) by multiplication by kp−1+r. Since the differentials

dp−1,−p
r : E p−1,−p

r,Y (X)→ E p−1+r,−(p−1+r)
r,Y

commute with ψk, we have kp(kr−1−1)dp−1,−p
r = 0. Hence, if r ≥ 2, after tensor-

ing with Q, dp−1,−p
r vanishes, i.e. E p,−p

2,Y (X)Q ∼= E p,−p
∞,Y (X)Q. Now we can compute

the E∞ page by filtering, and finally get E p,−p
∞,Y (X)Q = GrpKY

0 (X)Q.

To summarize, we obtain CHp
Y (X)Q ∼= GrpKY

0 (X)Q.

Exercise 3.1.16. As a computable case, we compute the Chow groups of X = P1(C).

• There is a split exact sequence

0−→ Z α−→ K′0(X)
β−→ Pic(X)−→ 0,

where α : n 7→ n[OX ]; α−1 = rank; β = det; β−1 : OX (P) 7→ [CP] = [OX (P)]− [OX ].

• The exact sequence above induces an isomorphism of groups

K′0(X)
∼→Pic(X)⊕Z ∼→Z2, [F ] 7→ (det(F ), rank(F )) 7→ (deg(det(F )), rank(F )).

Moreover, if one makes Z2 into a ring by define (a,b) · (c,d) := (ad + bc,bd), so
Z2 ∼= Z[x]/(x2). This makes K′0(X) into a ring, the multiplicative structure is given
by the tensor product of OX -modules. (Indeed, Z[x]/(x2) is the Chow ring CH·(X)
of X, where x = [P] corresponds to the skyscraper sheaf [CP] in K′0(X)).

• Verify Gr0KX
0 (X) ∼= Z, Gr1KX

0 (X) ∼= Z. Hence the Chow ring CH·(X) = Z⊕Z by
Theorem 3.1.8.

• Let P be a closed point in X. Verify Gr0KP
0 (X) = 0, Gr1KP

0 (X) ∼= Z. Hence the
Chow ring with supports in P is CH·P(X) = Z by Theorem 3.1.8.

• Consider the natural λ -ring structure given by the wedge product on K′0(X) ∼= Z2.
Verify the second component of λ 2 is (m,n) 7→ n(n−1)

2 , and the second component
of ψ2 is (m,n) 7→ n.
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3.2 Green Currents
In this section, we introduce some preliminaries of complex geometry. The arithmetic
variety must have a smooth generic fiber, so the infinite part is a smooth projective com-
plex variety. Now let X be a smooth projective complex manifold, we will define some
currents on it with respect to some closed irreducible subvarieties Z ⊆ X . But Z may not
be smooth! Therefore, in order to make a definition of integrating on Z, one may need the
resolution of singularities.

Now we review some basic concepts of differential forms.
Let X be a smooth projective complex equidimensional variety of complex dimension

d, denote

A p,q := the linear space of C-valued differential forms of type (p,q).

More precisely, if (z1, · · · ,zd) are local coordinates, then any element in A p,q has form

<∞

∑
1≤i1<···<ip≤d
1≤ j1<···< jq≤d

fi1,··· ,ip; j1,··· , jq(z1, · · · ,zd ;z1, · · · ,zd)dzi1 ∧·· ·∧dzip ∧dz j1 ∧·· ·∧dz jq ,

where fi1,··· ,ip; j1,··· , jq are smooth functions. Denote by A n :=
⊕

p+q=n A p,q the space of
differential forms of degree n, and denote by ∂ , ∂ , d the usual differentials.

Definition 3.2.1 (Currents). Define

Dn :=

F : A n→ C linear :
for any compact K, if {ωr} ⊆A n s.t. Supp(ωr)⊆ K
and all derivatives of all coefficients of ωr ⇒ 0 on K
if r→ ∞, then F(ωr)→ 0.

 ,

then we obtain the decomposition Dn =
⊕

p+q=n Dp,q. Now define the space of n-currents
(resp. (p,q)-currents) to be Dn := Dd−n (resp. D p,q := Dd−p,d−q).

The differentials ∂ , ∂ , d induce:

• ∂ : D p,q −→D p+1,q, given by(
T : A d−p,d−q→C,ω 7→T (ω)

)
7−→

(
∂T : A d−p−1,d−q→C,ω 7→ (−1)p+q+1T (∂ω)

)
.

• ∂ : D p,q −→D p,q+1, given by(
T : A d−p,d−q→C,ω 7→T (ω)

)
7−→

(
∂T : A d−p,d−q−1→C,ω 7→ (−1)p+q+1T (∂ω)

)
.

• d = ∂ +∂ : D p,q −→D p+q+1, given by(
T : A d−p,d−q→C,ω 7→T (ω)

)
7−→

(
dT : A d−p−q−1→C,ω 7→ (−1)p+q+1T (dω)

)
.

Let us complete the definitions that first appeared in Section 2.2, which give several
important examples.
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• Let ω ∈ L1⊗C ∞ A p,q, then we can define a current [ω] ∈D p,q induced by ω to be

[ω](η) :=
∫

X
ω ∧η , η ∈A d−p,d−q.

• Let Y be a codimension p irreducible smooth complex submanifold of X , then we
get a Dirac current δY ∈D p,p defined by

δY (η) :=
∫

Y
η , η ∈A d−p,d−p.

• More generally, for a codimension p irreducible complex submanifold Y (not nec-
essarily smooth) of X with embedding i : Y ↩→ X , define a current δY ∈D p,p by

δY (η) :=
∫

non-singular locus of Y
i∗η , η ∈A d−p,d−p.

The well-definedness of this δY is given by the following Hironaka’s theorem on
the resolution of singularities.

Theorem 3.2.2 (Hironaka). Given any Z ⊆ Y , where Z contains the singular
locus of Y , there exists a proper map π : Ỹ → Y such that:

– Ỹ is smooth.

– π−1(Z) is a divisor with normal crossings.

– π : Ỹ \π−1(Z)→ Y \Z is an isomorphism.

– δY (η) =
∫

Y\Z
i∗η =

∫
Ỹ

π∗i∗η .

By linearity we extend this definition to arbitrary codimension p complex subman-
ifolds.

One can check that:

Exercise 3.2.3. There are some identities:

• ddcT (ω) =−T (ddcω), so ddc[ω](η) =−[ω](ddcη).

• d[ω] = [dω] (use Stokes’ formula). But dc[ω] ̸= [dcω], so ddc[ω] ̸= [ddcω].

Recall Proposition 2.2.3 states that if gP is a Green function (of logarithmic type) with
respect to µ , then ddc[−gP]+δP = [µ ]. Refer to this fact, we may define a class of special
currents. First of all, let us review the definition of forms of logarithmic type, this is to get
some moderate growing forms to make the integrals converge.

A smooth form ω on X \Y is said to be of logarithmic type along Y , if there exists
a projective map π : X̃ → X such that π−1(Y ) is a divisor with normal crossings, π :
X̃ \π−1(Y )→ X \Y is smooth and ω is the direct image by π of a form α on X̃ \π−1(Y )
with the following property: near each x∈ X̃ , let z1 · · ·zk = 0 be a local equation of π−1(Y ),
then there exists ∂ and ∂ closed smooth forms αi and a smooth form γ such that

α =
k

∑
i=1

αi log |zi|2 + γ.
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Definition 3.2.4 (Green Currents). A Green current for a codimension p complex
submanifold Y (not necessarily irreducible, but does not contain any irreducible compo-
nents of X), is a current gY ∈D p−1,p−1 such that −ddcgY +δY = [ω] for some ω ∈A p,p.

Theorem 3.2.5. If X is Kähler, then every Y ⊆ X has a Green current. If g1,g2 are
two Green currents for Y , then

g1−g2 = [η ]+∂S1 +∂S2

for some η ∈ A p−1,p−1, S1 ∈ D p−2,p−1, S2 ∈ D p−1,p−2. In particular, there exists a
smooth form gY on X \Y of logarithmic type along Y such that [gY ] is a Green current for
Y , i.e. ddc[−gY ]+δY = [ω] for some smooth form ω .

Proof. First, let us show that if T ∈D p,p with T = dS for some current S, then T = ddcU
with U ∈D p−1,p−1. This is the so-called ∂∂ -lemma.

Recall the Hodge decomposition states that for a Kähler manifold X we get adjoints
∂ ∗,∂ ∗,d∗ of ∂ ,∂ ,d for the L2-scalar product on forms (see Remark 2.1.9), and if Hp,q :=
ker(∆dR) denotes the space of harmonic forms then under the L2-scalar product we have

A p,q =Hp,q⊕ im(d)⊕ im(d∗) =Hp,q⊕ im(∂ )⊕ im(∂ ∗) =Hp,q⊕ im(∂ )⊕ im(∂ ∗),

(or there may be such a decomposition for D p,q). Hence, if write T = ∂S+∂S, by Hodge
decomposition S = h1 +∂x1 +∂ ∗y1 = h2 +∂x2 +∂ ∗y2, so ∂S = ∂∂x2 +∂∂ ∗y2 and ∂S =
∂∂x1 +∂∂ ∗y1. Thus

T = ∂∂x1 +∂∂x2 +∂∂ ∗y2 +∂∂ ∗y1.

Now dT = 0 implies ∂T = ∂T = 0, so ∂∂∂ ∗y1 = 0 and ∂∂ ∂ ∗y2 = 0. Therefore

0 = ⟨∂∂∂ ∗y1,∂y1⟩L2 =−⟨∂∂ ∗y1,∂∂ ∗y1⟩L2 ,

so ∂∂ ∗y1 = 0, and similarly ∂∂ ∗y2 = 0. Hence T = ∂∂ (x2− x1), i.e. U = 2πi(x1− x2).
Here we only prove the existence of Green currents (we omit the proof of the existence

of logarithmic type Green currents). By Stokes’ formula we have dδY = 0, hence by
Hodge decomposition we deduce δY = [ω]+dS for some ω ∈A p,p and some current S.
By ∂∂ -lemma, we have [ω]−δY =−dS =−ddcg for some g ∈D p−1,p−1.

Theorem 3.2.6 (Poincaré-Lelong Formula). Let L be a Hermitian line bundle on
X with metric ∥ · ∥, suppose s is a meromorphic section of L , then − log∥s∥2 ∈ L1 hence
induces [− log∥s∥2] ∈D0,0. This is a Green current for div(s), in fact

ddc[log∥s∥2]+δdiv(s) = [c1(L ,∥ · ∥)].

Proof. Refer to the proof of Proposition 2.1.12. Note that c1(L ,∥ · ∥) = −ddc log∥s∥2

for some meromorphic section s. After resolving the singularities, we may assume that in
a local chart U ∼→ Cd , div(s) has equation z1 · · ·zk = 0. By linearity we are reduced to the
case s = z1. Since −ddc log |z1|2 = 0, apply Exercise 3.2.3, what we have to show is∫

U
log |z1|2ddcω =

∫
z1=0

ω,
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where ω ∈A d−1,d−1 with compact support in U . Indeed,∫
U

log |z1|2ddcω

= lim
r→0

∫
|z1|≥r

log |z1|2∧ddcω

= lim
r→0

∫
|z1|=r,y

log |z1|2∧dcω− lim
r→0

∫
|z1|≥r

d log |z1|2∧dcω (Stokes’ formula)

= lim
r→0

∫
|z1|≥r

dc log |z1|2∧dω (Exercise 2.2.4)

= lim
r→0

∫
|z1|≥r

ddc log |z1|2∧ω− lim
r→0

∫
|z1|=r,y

dc log |z1|2∧ω (Stokes’ formula)

=
∫

z1=0
ω. (ddc log |z1|2 = 0)

The last term is because dc log |z1|2 = ∂−∂
4πi log(z1z1) =

1
2π im( dz1

z1
) = d arg(z1)

2π .

As the end of this section, we introduce the ⋆-product of Green currents.

Definition 3.2.7 (⋆-Product). Let gY be a form of logarithmic type for Y given by
Theorem 3.2.5 such that ddc[−gY ]+ δY = [ωY ], let gZ be a Green current for Z. Define
their ⋆-product to be

[gY ]⋆gZ := [gY ]∧δZ +[ωY ]∧gZ ,

where ([gY ] ∧ δZ)(η) :=
∫

Z gY ∧ η (assume the singularities have been resolved) and
([ωY ]∧gZ)(η) := gZ(ωY ∧η).

This definition is well-defined, but not trivial. In contrast, the following fact is more
important.

Proposition 3.2.8. If Y,Z intersect properly, then

−ddc([gY ]⋆gZ) = [ωY ∧ωZ ]−∑
x

ix(Y,Z)δx,

where x runs out of all irreducible components of Y ∩Z.

Proof. We prove this formally. Indeed,

ddc([gY ]⋆gZ) = ddc[gY ]∧δZ +[ωY ]∧ddcgZ

= (δY − [ωY ])∧δZ +[ωY ]∧ (δZ− [ωZ ])

= δY ∧δZ− [ωY ]∧ [ωZ ]

=−([ωY ∧ωZ ]−δY∩Z),

as desired.

Remark 3.2.9. Let Y ⊆ X be a closed irreducible submanifold and gY a Green cur-
rent for Y . By Theorem 3.2.5, there exists a Green form g̃Y of logarithmic type for Y such
that

gY − [g̃Y ] = [η ]+∂S1 +∂S2,
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so every Green current for Y may be represented by a Green form of logarithmic type
along Y modulo im(∂ )+ im(∂ ), since η is a smooth form. Hence, if Y,Z ⊆ X are closed
irreducible submanifolds such that Z * Y and gY (resp. gZ) a Green current for Y (resp.
Z), then we can define the ⋆-product of gY with gZ by

gY ⋆gZ := [g̃Y ]⋆gZ (mod im(∂ )+ im(∂ )).

One can show that this definition does not depend on the choice of g̃Y .

Under the assumption of Remark 3.2.9, the ⋆-product satisfy some operational laws.

Proposition 3.2.10. After modulo im(∂ )+ im(∂ ), the ⋆-product is commutative and
associative.

Proof. We also compute formally with currents as if they are forms. If Y,Z,W ⊆ X are
closed irreducible submanifolds meeting properly with currents gY ,gZ ,gW , respectively,
then

gY ⋆gZ = gY ∧δZ +ωY ∧gZ (−ddcgY +δY = [ωY ])

= gY ∧δZ +δY ∧gZ−ddcgY ∧gZ

= gY ∧δZ +δY ∧gZ−gY ∧ddcgZ (general case of Exercise 2.2.5)
= gZ ⋆gY ,

and

gY ⋆ (gZ ⋆gW ) = gY ∧δZ ∧δW +ωY ∧gZ ∧δW +ωY ∧ωZ ∧gW = (gY ⋆gZ)⋆gW .

The strict proof uses the precise form of Hironaka’s theorem on the resolution of singu-
larities.

3.3 Gillet-Soulé Intersection Pairing
In this section, we develop Arakelov geometry in higher dimensions. Let X be an inte-
gral regular projective flat scheme over Z with smooth generic fiber (i.e. an arithmetic
variety), we will define the higher arithmetic Chow groups, and study the arithmetic in-
tersection theory. The methods in which these theories are established are quite different
from Chapter 2.3, but we will assert that these seemingly different geometries are essen-
tially the same.

Let us introduce some notations. Assume X is an arithmetic variety over Z, denote the
complex conjugation by F∞ : X(C)→ X(C), it is a continuous involution of X(C). Put

• Ap,p(X) := {ω ∈A p,p(X(C)) : ω real, F∗∞ω = (−1)pω}.

• Ãp,p(X) := Ap,p(X)/(im(∂ )+ im(∂ )).

• Zp,p(X) := ker
(
d : Ap,p(X)→A 2p+1(X(C))

)
⊆ Ap,p(X).

• H p,p(X) := ker
(
ddc : Ap,p(X)→ Ap+1,p+1(X)

)/
(im(∂ )+ im(∂ ))⊆ Ãp,p(X).

• Dp,p(X) := {T ∈D p,p(X(C)) : T real, F∗∞T = (−1)pT}.
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The notations above fit into the following diagram:

Zp,p(X)

γω 7→ω(mod im(∂ )+im(∂ ))
��

� � // Ap,p(X)

����

� � ω 7→[ω] // Dp,p(X)

H p,p(X) �
� // Ãp,p(X)

Now we give the definition of higher arithmetic Chow groups.

Definition 3.3.1 (Arithmetic Chow Groups). Let X be an arithmetic variety over Z.
Define the group of p-arithmetic cycles to be

Ẑp(X) :=
{
(Z,gZ) : Z ∈ Zp(X),gZ ∈D p−1,p−1(X(C)) a Green current for Z(C)

}
,

with addition defined componentwise. Let R̂p(X)⊆ Ẑp(X) be the subgroup generated by
pairs (

0,∂ (u)+∂ (v)
)

and
(
div( f ),−[log | fC|2]

)
,

where u (resp. v) is a current of type (p− 2, p− 1) (resp. (p− 1, p− 2)), f ∈ k(y)×

for some y ∈ X (p−1), and fC is the pull-back of f by X(C)→ X . The quotient group
ĈH

p
(X) := Ẑp(X)/R̂p(X) is called the p-th arithmetic Chow group.

Since X is projective, one can choose a "canonical volume form" such that X(C) has
finite volume. Hence, in the definition above, after resolving the singularities if needed,
− log | fC|2 is a Lebesgue integrable function on y(C) (because there are as many zeros
and poles) and induces a Green current

−[log | fC|2] ∈D p−1,p−1(X(C)), ω 7→
∫

y(C)
− log | fC|2∧ (ω|y(C))

for div( f )(C) by Theorem 3.2.6.

Theorem 3.3.2. There are two exact sequences:

• H p−1,p−1(X)
α−→ ĈH

p
(X)

(ϕ ,ψ)−→ CHp(X)⊕Zp,p(X).

• Ãp−1,p−1(X)
α−→ ĈH

p
(X)

ϕ−→ CHp(X)−→ 0.

If we assume −ddcgZ + δZ = [ωZ ] for Z ∈ Zp(X), then the maps are α : ω 7→ [(0, [ω ])];
ϕ : [(Z,gZ)] 7→ [Z]; ψ : [(Z,gZ)] 7→ ωZ .

Proof. We only prove the first one, all maps are well-defined. Indeed, α is well-defined
because ω ∈ H p−1,p−1(X) always a Green current for the zero cycle (this also implies
(ϕ ,ψ)◦α = 0); ψ is well-defined because the Stokes’ formula implies dδZ = 0, so ωZ is
closed. To show ker(ϕ ,ψ)⊆ im(α), we know (ϕ ,ψ)[(Z,gZ)] = 0 if and only if−ddcgZ +
δZ = 0 for some Z = ∑y div( fy), where fy ∈ k(y)×, y ∈ X (p−1). Thus

[(Z,gZ)] =
[(

∑
y

div( fy),gZ

)]
=
[(

0,gZ +∑
y
[log | fy,C|2]

)]
=: [(0,G)].

Since −ddcG = −ddcgZ + δZ = 0, so G and 0 are Green currents for the zero cycle. By
Theorem 3.2.5 we have G = [η ] + ∂S1 + ∂S2 for some smooth form η , one can verify
α(η) = [(Z,gZ)].
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Remark 3.3.3. In fact, some extra terms can be added to the left and the right of the
exact sequences in Theorem 3.3.2, the following sequences are exact:

E p−1,−p
2,X (X)→ H p−1,p−1(X)→ ĈH

p
(X)→ CHp(X)⊕Zp,p(X)→ H p,p(X)→ 0,

and
E p−1,−p

2,X (X)→ Ãp−1,p−1(X)→ ĈH
p
(X)→ CHp(X)→ 0.

The definition of E p−1,−p
2,X (X) can be found in the proof of Theorem 3.1.8, each element(

fy : ∑y div( fy) = 0
)
∈ E p−1,−p

2,X (X) is sent to −∑y log | fy,C|2 ∈ H p−1,p−1(X). The map

CHp(X)⊕Zp,p(X)→ H p,p(X), ([Z],ω) 7→ cyc([Z])−ω (mod im(∂ )+ im(∂ ))

is defined as follows.
For each 0≤ p≤ dim(X), we can construct a homomorphism

cyc : CHp(X)→ CHp(X(C))→ H2p(X(C),Z)→ H p,p(X).

More precisely, let Z ⊆ X be a (generically smooth, without loss of generality) closed
subvariety of codimension p and U := X \Z, note that X(C) is a smooth projective variety
over C, we have an exact sequence by excision theorem:

· · · → H2p((X(C);U(C)),Z) ε→ H2p(X(C),Z)→ H2p(U(C),Z)→ ·· · .

Recall the Thom isomorphism states

Th : H2p((X(C);U(C)),Z) ∼→ H0(Z(C),Z)∼= Zthe number of irreducible components of Z(C),

use these we define cyc([Z]) := ε ◦Th−1(1, · · · ,1).

Example 3.3.4. In the case of curves, let X = Spec(OK) for a number field K, then
Theorem 3.3.2 (or Remark 3.3.3) becomes(

0→ µK →
)

O×K → Rr1+
r2
2 → P̂ic(X)→ Cl(OK)→ 0→ 0,

where r1 (resp. r2) is the number of real (resp. complex) embeddings. All details have
been defined in Chapter 1.1.

We now introduce Gillet-Soulé’s arithmetic intersection theory.

Theorem 3.3.5 (Gillet-Soulé). Let X be an arithmetic variety over Z, then there
exists a bilinear pairing

(·, ·) : ĈH
p
(X)× ĈH

q
(X)→ ĈH

p+q
(X)Q,

It turns
⊕

p ĈH
p
(X)Q into a commutative graded Q-algebra with unit [(X ,0)] ∈ ĈH

0
(X).

Moreover,

• ϕ
(
[(Z,gZ)], [(W,gW )]

)
=
(
ϕ [(Z,gZ)],ϕ [(W,gW )]

)
= ([Z], [W ]).

• ψ
(
[(Z,gZ)], [(W,gW )]

)
= ψ [(Z,gZ)]∧ψ[(W,gW )].
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Proof. (proof sketch). Suppose we have two arithmetic cycles (Z,gZ) and (W,gW ), our
aim is to define [(Z ∩W,gZ∩W )]. Indeed, the cycle Z ∩W is given by Theorem 3.1.4
algebraically. Now let

CHp
fin(X) :=

{Z ∈ Zp(X) : Supp(Z)∩XQ = /0}⟨
div( f ) : f ∈ k(y)× for some y ∈ X (p−1) \XQ

⟩ ,
there is a canonical map

Zp(X)→ CHp(X)→ CHp
fin(X)⊕Zp(XQ), Z 7→ Zfin +ZQ.

To define gZ∩W , one just needs the generic part Z·(XQ), because the finite part CH·fin(X)
does not produce cycles in X(C). We can assume that ZQ and WQ intersect properly (use
the Q-moving lemma), then Theorem 3.1.4 implies there exists a well-defined intersection
cycle (ZQ,WQ) in XQ. The current for Z ∩W is now defined to be gZQ(C) ⋆ gWQ(C), since
Proposition 3.2.8 guarantees it is a Green current for (Z∩W )(C).

In the proof of Theorem 3.3.5, we decompose the so-called intersection pairing into
the finite part and the generic part, in order to correspond with the vertical divisors and
horizontal divisors in Arakelov’s intersection theory in Chapter 2.3. These two types of
intersections should be treated differently. We use an exercise to summarize this.

Exercise 3.3.6. Let X be an arithmetic surface over Z and assume µ is a canonical
volume form on X(C). Show that there is an embedding

ĈH
1
(X ,µ) ↩→ ĈH

1
(X), (Z,r) 7→

(
Z, [gZ(C)+2r]

)
,

where gZ(C) is the Green function of logarithmic type with respect to µ . Try to reconstruct
the Arakelov intersection theory (Theorem 2.3.4) by using the Gillet-Soulé intersection
theory (Theorem 3.3.5). For the finite part, you should define a natural degree map from
the algebraic Chow group to R; for the infinite part, you should use ⋆-product to define
intersect currents and compute their values at the constant function 1/2.

Theorem 3.3.7. Let X ,Y be arithmetic varieties, and let f : Y → X be a morphism.

• There is a pull-back homomorphism f ∗ : ĈH
p
(X)→ ĈH

p
(Y )Q, it is multiplicative.

• If f is proper, fQ : YQ→ XQ is smooth and X ,Y are equidimensional, then there is

a push-forward homomorphism f∗ : ĈH
p
(Y )→ ĈH

p−(dim(Y )−dim(X))
(X).

• The projection formula holds:

f∗( f ∗α ,β ) = (α, f∗β ), for α ∈ ĈH
p
(X),β ∈ ĈH

q
(Y ).

• (·)∗ is a contravariant functor, (·)∗ is a covariant functor.

Proof. (proof sketch). We only need to prove the first three items.
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• Let [(Z,gZ)] ∈ ĈH
p
(X) where Z is irreducible and assume codimYQ( f−1(Z)Q) = p

(any general case can be reduced to this case). By functoriality of K-theory or Chow
theory (Theorem 3.1.4), we form a class f ∗[Z] ∈ CHp(Y )Q, its image under

CHp(Y )Q→ CHp
fin(Y )Q⊕Zp(YQ)Q

is also denoted by f ∗[Z]. Furthermore, one can verify the pull-back f ∗C(gZ) is also
a Green current. So

f ∗[(Z,gZ)] := [( f ∗[Z], f ∗C(gZ))] ∈ ĈH
p
(Y )Q.

• Denote q := dim(Y )−dim(X), we construct the map Ẑp(Y )→ Ẑp−q(X), given by
(Z,gZ) 7→ ( f∗(Z), fC,∗(gZ)), where

f∗(Z) :=

{
[k(Z) : k( f (Z))] · f (Z) dim( f (Z)) = dim(Z)
0 dim( f (Z))< dim(Z)

To study fC,∗(gZ), observe that for a differential form η on X(C) of appropriate
degree, we have

( fC,∗(δZ))(η)

=
∫

Z(C)
f ∗C(η | f (Z(C)))

=

{
[k(Z(C)) : k( f (Z(C)))] ·

∫
f (Z(C)) η dim( f (Z(C))) = dim(Z(C))

0 dim( f (Z(C)))< dim(Z(C))

Hence fC,∗(δZ) = δ f∗(Z), from which we deduce

−ddc( fC,∗(gZ)) = [ fC,∗(ωZ)]−δ f∗(Z).

So the map we have constructed is reasonable. It is easy to see this map sends
R̂p(Y ) into R̂p−q(X), because for a rational function h ∈ k(W )× with dim( f (W )) =
dim(W ) for some W ∈ Y (p−1), one can check the image of

(
div(h),−[log |hC|2]

)
is(

div
(
Nmk(W )/k( f (W ))(h)

)
,−
[

log
∣∣Nmk(W (C))/k( f (W (C)))(hC)

∣∣2]).
For the third item, we already have the projection formula for algebraic cycles, see Propo-
sition 3.1.6. Therefore, we are left to prove it for Green currents. This can be calculated
by the definition of the ⋆-product, we leave it as an exercise.

3.4 Characteristic Classes

In this section, we establish the theory of Chern-Weil, and use them to study metrized
vector bundles at infinite parts of arithmetic varieties.
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Let us review Chern-Weil theory first. Let E be a rank r Hermitian vector bundle
on a complex manifold X (we discard the symbols ∥ · ∥ or h for simplicity), suppose its
curvature matrix is Ω, then the total Chern class of E is

det
(

I +
i

2π
Ω
)
= 1+ c1(E)+ · · ·+ cr(E) ∈ H ·dR(X),

where ci(E) ∈ H2i
dR(X) is the i-th Chern class.

Definition 3.4.1 (Chern Character Forms). Let E be a rank r Hermitian vector bundle
on X . Consider the Chern polynomial

ch(x1, · · · ,xr) :=
r

∑
j=1

et j = r+ ch1(x1, · · · ,xr)+ ch2(x1, · · · ,xr)+ · · · ,

where

chk(x1, · · · ,xr) :=
r

∑
i=1

tk
i

k!

and x1, · · · ,xr are elementary symmetric polynomials in t1, · · · , tr. Then the Chern char-
acter of E is defined to be a differential form

ch(E) := ch(c1(E), · · · ,cr(E)) ∈
⊕
p≥0

A p,p.

Exercise 3.4.2. If the total Chern class has form ∏i(1+ ti), then ch(E) = ∑i eti . In
particular, if L is a Hermitian line bundle, then ch(L ) = ec1(L ).

There are some basic properties of Chern characters, but we do not intend to prove
them here.

Proposition 3.4.3. Let f : Y → X be a holomorphic map, let E,F be Hermitian
vector bundles on X. Then

• ch depends on the choice of the metric on E, but not its cohomology class.

• ch is a characteristic class, i.e. f ∗ ch(E) = ch( f ∗E).

• ch satisfies Whitney’s formula, i.e. ch(E⊕F) = ch(E)+ ch(F) and ch(E⊗F) =
ch(E)∧ ch(F).

Whitney’s formula reminds us that Chern characters are only additive for split exact
sequences, so we can use them to construct an invariant to measure the splitness of exact
sequences of Hermitian vector bundles.

Theorem 3.4.4. There is a unique way to attach to every sequence of Hermitian
vector bundles

E : 0→ E ′
f→ E

g→ E ′′→ 0

a form
c̃h(E) ∈

⊕
p≥0

(
A p,p/(im(∂ )+ im(∂ ))

)
,

called the Bott-Chern (secondary) character form of E, satisfying the following proper-
ties:
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• ddc c̃h(E) = ch(E ′)− ch(E)+ ch(E ′′).

• For every holomorphic map f : Y → X of complex manifolds, we have f ∗ c̃h(E) ≡
c̃h( f ∗E).

• If E is split, then c̃h(E)≡ 0.

• If F is a Hermitian vector bundle, then c̃h(E⊗F)≡ c̃h(E)∧ ch(F).

• If E1, E2 are two exact sequences of Hermitian vector bundles, then c̃h(E1⊕E2)≡
c̃h(E1)+ c̃h(E2).

Proof. (proof sketch).

• First, we construct a suitable Hermitian vector bundle (Ẽ, h̃) on X ×P1(C) which
describes the process of deformation of E to E ′⊕E ′′ on X .

Let O(1) be the degree one line bundle on P1(C) with the metric given by Exercise
2.1.13, let γ ∈ Γ(P1(C),O(1)) be a holomorphic section which has a single zero at
∞. Consider the Hermitian vector bundle E ′(1) := E ′⊗O(1) on X ×P1(C) with
metric given by E ′ and O(1), define Ẽ := (E⊕E ′(1))/E ′, where

E ′ ↩→ Ẽ, s 7→ (− f (s),s⊗ (γ · s)).

Now we have the following commutative diagram of vector bundles on X×P1(C):

E : 0 // E ′
f //

s
id⊗γ7−→s⊗(γ·s)

��

E

t
ρ7→[(t,0)]

��

g // E ′′

∼=
���
�
�

// 0

F : 0 // E ′(1)
s⊗r θ7→[(0,s⊗r)]

// Ẽ
[(t,s⊗r)] ϑ7→g(t)

// E ′′ // 0

For every point z ∈ P1(C), denote iz : X → X ×P1(C), x 7→ (x,z). Then check by
stalks we know:

– i∗0Ẽ ∼= E. This is because now id⊗ γ is an isomorphism, so the conclusion is
followed by the five lemma.

– i∗∞Ẽ ∼= E ′⊕E ′′. This is because now id⊗ γ : s 7→ 0, so i∗∞Ẽ ∼=
(
i∗∞(E/E ′)⊕

i∗∞E ′(1)
)
, but i∗∞E ′(1)∼= E ′.

To make Ẽ a Hermitian vector bundle, use a partition of unity, we can set a Hermi-
tian metric h̃ on Ẽ such that the isomorphisms i∗0Ẽ ∼= E and i∗∞Ẽ ∼= E ′⊕E ′′ become
isometries.

• Assume the Bott-Chern character forms are exist in any case. Consider the integral

I :=
∫
P1(C)

log |z|2∧ddc c̃h(F).
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One can compute

I =
∫
P1(C)

log |z|2∧
(

ch(E ′(1))− ch(Ẽ)+ ch(E ′′)
)

=ch(E ′)
∫
P1(C)

log |z|2∧ ch(O(1))−
∫
P1(C)

log |z|2∧ ch(Ẽ)+ ch(E ′′)
∫
P1(C)

log |z|2

=−
∫
P1(C)

log |z|2∧ ch(Ẽ).

The first integral vanishes since ch(O(1)) = 1+ i
2π

dz∧dz
(1+|z|2)2 , and the integral of the

top degree of log |z|2∧ ch(O(1)) is 0. On the other hand, use the same argument in
the proof of Theorem 3.2.6,

I =
∫

z=0
c̃h(F)−

∫
z=∞

c̃h(F) (Theorem 3.2.6’s proof)

=i∗0 c̃h(F)− i∗∞ c̃h(F)
(∫

z=z0

ω(x,z) = ω(x,z)
∣∣
(X ,z0)

)
≡ c̃h(i∗0F)− c̃h(i∗∞F) (mod im(∂ )+ im(∂ )) (i∗z ◦ c̃h≡ c̃h◦ i∗z )

≡ c̃h(E) (mod im(∂ )+ im(∂ )). (i∗0F= E; i∗∞F splits)

• To show the existence, note that c̃h(E) can be defined to be a integral

c̃h(E) :=−
∫
P1(C)

log |z|2∧ ch(Ẽ, h̃),

so we are done. One can check this definition does not depend on the construction
of h̃, and hence it implies the uniqueness of c̃h modulo im(∂ )+ im(∂ ).

All that remains is to verify that this construction satisfies the conditions above.

Like the previous processes, Chern classes and Chern characters also have arithmetic
analogies in Arakelov geometry. More generally, for any characteristic class, it always
has arithmetic analogues.

For example, here we construct the arithmetic Chern character ĉh. We hope this invari-
ant satisfies properties similar to the properties in Proposition 3.4.3 and Theorem 3.4.4,
so during the construction process we can assume it already satisfies these properties.

Refer to Exercise 3.4.2, we shall start with the case of metrized line bundles first.

Definition 3.4.5 (Arithmetic Chern Characters For Line Bundles). Let X be an arith-
metic variety over Z and L a metrized line bundle on X . Define the arithmetic Chern
character for L to be

ĉh(L ) := exp
([
(div(s),−[log∥sC∥2])

])
∈ ĈH

·
(X)Q,

where s is a non-zero rational section of L .

Exercise 3.4.6. The map ψ in Theorem 3.3.2 maps ĉh(L ) to ch(LC).
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Next, for a general Hermitian vector bundle, we will use a more advanced version
of the splitting principle to descend the dimension. That is, we should introduce the
construction of arithmetic Chern characters for some special bundles (indeed, tautological
bundles) on Grassmannians, and then use the fact that any bundle on a projective variety,
once tensored with an ample line bundle, is classified by a map to a Grassmannian.

Let m,n be positive integers. Recall the (m,n)-Grassmannian over Z is a scheme
Grm,n associated by a representable contravariant functor

HomZ-Sch(·,Grm,n) :Z-Sch−→Sets, X 7−→
{

Om+n
X

f
� F : F is a rank n bundle on X

}
.

In particular, if we take X = Grm,n itself, then the vector bundle on Grm,n corresponding
to idGrm,n is the special bundle we want, denoted as Tautm,n.

There is a natural map, which comes from the natural transformation

µq,n : (Grq,1)
n −→ Grqn,n,

(
Oq+1

X � Li
)

1≤i≤n 7−→
(

Oqn+n
X �

n⊕
i=1

Li

)
.

The splitting principle states that µ∗q,n(Tautqn,n) =
⊕n

i=1 Li for some line bundles Li on
(Grq,1)

n. This is because µ∗q,n(Tautqn,n) is corresponding to

idGrqn,n ◦µq,n ∈ HomZ-Sch
(
(Grq,1)

n,Grqn,n
)∼= n

∏
i=1

HomZ-Sch(Grq,1,Grqn,n).

To do Arakelov geometry, we should equip Tautqn,n,C with a natural Hermitian metric.
Like Exercise 2.1.13, we equip it with a quotient metric induced by the metric ∑qn+n

i=1 |zi|2
on Cqn+n. One can check this metric is compatible with the decomposition

µ∗q,n,C(Tautqn,n,C) =
n⊕

i=1

Li,C,

if all Li,C have suitable metrics.
In order for ĉh to satisfy properties in Proposition 3.4.3, according to Definition 3.4.5,

we make the following definition.

Definition 3.4.7 (Arithmetic Chern Characters For Tautological Bundles). Suppose
q is big enough (this is a technical requirement). Define the arithmetic Chern character
for the metrized vector bundle Tautqn,n to be

ĉh(Tautqn,n) := (µ∗q,n)−1
( n

∑
i=1

ĉh(Li)
)
∈ ĈH

·
(Grqn,n)Q.

Finally, for the general case, let E be a rank n metrized vector bundle on an arithmetic
variety X defined over Z. Since X is projective, there exists an ample line bundle on X .
This means there exists a line bundle L on X such that E⊗L −1 is generated by global
sections, i.e. there is a surjective map ON

X � E⊗L −1 for some N. Indeed we can take
N = qn+ n. By the definition of Grassmannian, there exists a morphism f : X → Grqn,n
corresponding to ON

X � E⊗L −1, i.e. f ∗(Tautqn,n)∼= E⊗L −1. We can equip L with a
suitable metric to make this isomorphism an isometry at the infinite part.
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Proposition 3.4.8. Suppose we already have a complete definition for ĉh. Let

E : 0→ E ′→ E→ E ′′→ 0

be an exact sequence of metrized vector bundles on X, then

ĉh(E ′)− ĉh(E)+ ĉh(E ′′) = α(c̃h(EC)),

where α is the map defined in Theorem 3.3.2.

Proof. As in the proof of Theorem 3.4.4, we may construct a metrized vector bundle Ẽ on
X×P1

Z such that i∗0Ẽ ∼= E and i∗∞Ẽ ∼= E ′⊕E ′′ are isometries, where iz : X → X×P1
Z,x 7→

(x,z). Since we hope ĉh satisfies properties in Theorem 3.4.4, so

i∗0ĉh(Ẽ)− i∗∞ĉh(Ẽ) = α
(∫

P1(C)
log |z|2∧ψ(ĉh(Ẽ))

)
=−α(c̃h(EC)).

Here we view everything as an arithmetic cycle.

Applying Proposition 3.4.8 to the exact sequence

T : 0→ E→ f ∗(Tautqn,n)⊗L → 0,

we finally obtain:

Definition 3.4.9 (Arithmetic Chern Characters For Vector Bundles). For a metrized
vector bundle E on an arithmetic variety X defined over Z, define its arithmetic Chern
character as

ĉh(E) := f ∗ĉh(Tautqn,n)∧ ĉh(L )+α(c̃h(TC)) ∈ ĈH
·
(X)Q.

Through these definitions, we immediately conclude that ĉh satisfies properties in
Proposition 3.4.3, and one can prove that this definition is independent of the choices of
f and L .

Exercise 3.4.10. The Todd polynomial is

td(x1, · · · ,xr) :=
r

∏
j=1

t j

1− e−t j
= 1+ td1(x1, · · · ,xr)+ td2(x1, · · · ,xr)+ · · · ,

where

tdk(x1, · · · ,xr) := degree k part in
r

∏
j=1

t j

1− e−t j
;

t
1− e−t = 1+

t
2
+

t2

12
− t4

720
+ · · ·

and x1, · · · ,xr are elementary symmetric polynomials in t1, · · · , tr. For example, one can

compute td1(x1, · · · ,xr) =
x1
2 , td2(x1, · · · ,xr) =

x2
1+x2
12 , · · · .

For a rank r Hermitian vector bundle E, define its Todd class as

td(E) := td(c1(E), · · · ,cr(E)) ∈
⊕
p≥0

A p,p.

Show that:
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• If 0→ E ′→ E→ E ′′→ 0 is exact, then td(E) = td(E ′)∧ td(E ′′).

• Try to define the arithmetic Todd classes t̂d. You should start with the situation of
metrized line bundles, and note that we have defined

ĉ1(L ) :=
[
(div(s),−[log∥sC∥2])

]
in Definition 3.4.5, where s is a non-zero rational section of L .

3.5 Generalized Heat Equations

We first introduce the heat kernels, and then use their trace formulas to introduce the
Selberg zeta functions and study their analytical properties. These contents will appear in
the arithmetic Riemann-Roch formula as analytic torsions, which are expressed as metrics
on the determinant of cohomologies, see the next section.

Let (X ,g) be a n dimensional compact orientable Riemann manifold and (E,h) be
a Hermitian vector bundle on X . Then one can define a metric induced by g and h on
Γ(X ,E), the linear space of smooth global sections of E, to be

⟨·, ·⟩Γ : Γ(X ,E)×Γ(X ,E)→ C, ⟨s, t⟩Γ :=
∫

X
⟨s(x), t(x)⟩h ·volg(x).

Recall the Laplace-Beltrami operator on Γ(X ,E) is

∆E
Bt :=

n

∑
i=1

(
∇h

ei
∇h

ei
−∇h

∇g
ei ei

)
: Γ(X ,E)→ Γ(X ,E),

where ∇h (resp. ∇g) is the connection induced by h (resp. g) and {ei} ⊆ T X is a set of
local coordinates. It should be emphasized that ∆E

Bt is a self-adjoint operator with respect
to ⟨·, ·⟩Γ.

Definition 3.5.1 (Generalized Laplacians). If a operator has form

H =−∆E
Bt +F : Γ(X ,E)→ Γ(X ,E),

where F ∈ Γ(X ,End(E)), then we call it a generalized Laplacian. A generalized Lapla-
cian is said of Laplace type, if in addition F is self-adjoint with respect to ⟨·, ·⟩Γ (this
implies H is self-adjoint).

Example 3.5.2. Let 0 ≤ k ≤ dim(X) be an integer. The Laplace-de Rham operator
∆dR = dd∗ + d∗d in Remark 2.1.9 is a generalized Laplacian on A k = Γ(X ,

∧k T ∗X)
of Laplace type. It is obviously a self-adjoint operator, because the adjoint of d is d∗.
Moreover, we have an important Weitzenböck formula:

∆dR =−∆
∧k T ∗X
Bt +

(
∑

i, j,u,v
Ri juve∗i ∧ e∗j ∧ ιeu ∧ ιev +∑

i, j
Rici je∗i ∧ ιe j

)
=:−∆

∧k T ∗X
Bt +F,

where ι means contraction.
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Definition 3.5.3 (Generalized Heat Equations). Let X be a compact orientable Rie-
mann manifold and E be a Hermitian vector bundle on X . The generalized heat equation
is a PDE has form ( ∂

∂ t +H)u(t,x) = 0, where H is a generalized Laplacian (H only acts
on the second component of u) and for each x ∈ X , u(·,x) : R→ Ex.

Let x,y ∈ X and t > 0, suppose on Γ(X ,E) we have a generalized Laplacian H. A
heat kernel for H is a class of linear maps pt(x,y) : Ey→ Ex, such that (t,x,y) 7→ pt(x,y)
is differentiable (resp. second-order differentiable) with respect to t (resp. x,y) and the
partial derivatives are continuous, satisfy the following two conditions:

• pt(x,y) satisfies the heat equation: ( ∂
∂ t +Hx)(pt(x,y)v) = 0 for all v ∈ Ey.

• pt(x,y) satisfies the initial condition: for any ξ ∈ Γ(X ,E), the limit

lim
t→0+

∫
X

pt(x,y)ξ (y)volg(y) = ξ (x)

converges uniformly.

Theorem 3.5.4. Let X be a compact orientable Riemann manifold and E be a Her-
mitian vector bundle on X, then any generalized Laplacian H has a unique heat kernel
which is smooth in t,x,y.

For example, if we consider the trivial complex line bundle on Rn with the standard
metric, then the heat kernel for ∆dR =−∆

∧0 T ∗Rn

Bt is

pt(x,y) =
1√

(4πt)n
exp
(
−∥x− y∥2

4t

)
, x,y ∈ Rn, t > 0.

The heat kernel gives the fundamental solution of the Cauchy problem of the (gener-
alized) heat equation.

Exercise 3.5.5. Let γ,ξ ∈ Γ(X ,E). The Cauchy problem is
(

∂
∂ t

+H
)

u(t,x) = γ(x);

lim
t→0+

u(t,x) = ξ (x).

Verify

u(t,x) :=
∫

X
pt(x,y)ξ (y)volg(y)+

∫ t

0
dτ
∫

X
pt−τ(x,y)γ(y)volg(y)

is a smooth solution of this PDE.

Theorem 3.5.4 implies that the solution in Exercise 3.5.5 is unique.
Now we use the unique smooth solution of heat equation (Exercise 3.5.5) to study the

behavior of eigenvalues of a given generalized Laplacian which is of Laplace type.

Definition 3.5.6 (Heat Kernel Operators). Let H be a generalized Laplacian of Laplace
type. For t > 0, define

e−tH : Γ(X ,E)−→ Γ(X ,E), ξ 7−→
[

e−tH(ξ ) : x 7→
∫

X
pt(x,y)ξ (y)volg(y)

]
.
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Note that e−tH(ξ ) is the smooth solution of a generalized heat equation with initial
condition given by ξ . If we let t→ 0+, this process is equivalent to completing the target
of e−tH , i.e. Γ(X ,E).

Proposition 3.5.7. For t > 0,

• e−tH is a compact operator.

• e−t1H ◦ e−t2H = e−(t1+t2)H .

• If H is of Laplace type, then e−tH is self-adjoint.

• There is a one-to-one correspondence {eigenvalues of H}↔{eigenvalues of e−tH},
given by λ ↔Ce−tλ for some constant C. This correspondence reverses the order.

Proof. First, we show e−tH is a compact operator. It is only needs to show that for any
bounded set F ⊆ Γ(X ,E) (i.e. there exists a positive number C, s.t. for any γ ∈ F we have
∥γ∥Γ ≤C), e−tH(F) is a sequentially compact set. By Arzela-Ascoli theorem, we should
prove e−tH(F) is uniformly bounded and equicontinuous.

• For uniform boundedness, let γ ∈ F (not necessarily continuous). Since pt(x,y) is
linear and smooth in x,y, the operator norm ∥pt(x,y)∥ ≤Mt for some Mt indepen-
dent of x and y. Hence,

∥pt(x,y)γ(y)∥h ≤Mt · ∥γ(y)∥h.

So ∥e−tH(γ)(x)∥h ≤ Mt · ∥γ∥Γ · volg(X) ≤ CMtvolg(X), this bound is independent
of γ and x.

• For equicontinuous, let x1,x2 ∈ X . If the distance d(x1,x2)→ 0, we have

|e−tH(γ)(x1)− e−tH(γ)(x2)|=
∣∣∣∣∫X

(pt(x1,y)− pt(x2,y))γ(y)volg(y)
∣∣∣∣

≤
∫

X

∥∥∥∥∂ pt(x,y)
∂x

∥∥∥∥ ·d(x1,x2) · ∥γ(y)∥h ·volg(y)

≤CM′t volg(X) ·d(x1,x2)→ 0.

The equality e−t1H ◦ e−t2H = e−(t1+t2)H is a consequence of the uniqueness of the so-
lution of a Cauchy problem (Exercise 3.5.5), we leave it as an exercise.

Now, suppose H is of Laplace type, define

Φ(τ) := ⟨e−(t−τ)H(γ1),e−τH(γ2)⟩Γ.

Since Exercise 3.5.5 (take γ = 0) implies − ∂
∂ t

(
e−tH(ξ )

)
= He−tH(ξ ), one can compute

∂Φ
∂τ

=

⟨
∂

∂τ
e−(t−τ)H(γ1),e−τH(γ2)

⟩
Γ
+

⟨
e−(t−τ)H(γ1),

∂
∂τ

e−τH(γ2)

⟩
Γ

=

⟨
− ∂

∂ (t− τ)
e−(t−τ)H(γ1),e−τH(γ2)

⟩
Γ
+
⟨

e−(t−τ)H(γ1),−He−τH(γ2)
⟩

Γ

=
⟨

He−(t−τ)H(γ1),e−τH(γ2)
⟩

Γ
−
⟨

e−(t−τ)H(γ1),He−τH(γ2)
⟩

Γ

=
⟨

He−(t−τ)H(γ1),e−τH(γ2)
⟩

Γ
−
⟨

He−(t−τ)H(γ1),e−τH(γ2)
⟩

Γ
≡ 0,
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so Φ(τ) is a constant function on (0, t). Consider the continuation we have limτ→0+ Φ(τ)=
limτ→t−Φ(τ), i.e.

⟨e−tH(γ1),γ2⟩Γ = ⟨γ1,e−tH(γ2)⟩Γ.

Finally, let us show the correspondence. Assume e−tH(ξ )=ηtξ where ηt is a function
only of t ∈ R, by Exercise 3.5.5 (take γ = 0) we have

ηtH(ξ ) = H
(
e−tH(ξ )

)
=− ∂

∂ t

(
e−tH(ξ )

)
=−η ′t ξ .

So Hξ = (− logηt)
′ξ and hence λ := (− logηt)

′ is independent of t (this implies the
constant λ is an eigenvalue of H), thus there must be ηt =Ce−tλ , i.e. the eigenvalues of
e−tH give the eigenvalues of H. By spectral theorem H does not have additional eigenval-
ues, since eigensubspaces of e−tH are eigensubspaces of H and they span the same whole
space.

By the spectral theorem of compact self-adjoint operators, we claim that for any
t > 0, the spectrum (i.e. the set of eigenvalues) of e−tH is a countable subset of C (the
only possible accumulation point for this set is 0), and for each non-zero element in the
spectrum, the eigensubspace of this element is finite dimensional.

Proposition 3.5.8. If H is a generalized Laplacian of Laplace type, then the set of
eigenvalues of H has a lower bound.

Proof. Fix a t > 0. Since H is of Laplace type, the spectrum of e−tH is contained in R. By
Proposition 3.5.7 we know e−tH is a compact operator hence a bounded operator, so the
spectrum of e−tH is contained in [0,D] for some D ∈R. This means the set of eigenvalues
of H has a lower bound.

Remark 3.5.9. With the notations in Example 3.5.2, the metric ⟨·, ·⟩Γ is now the
L2-scalar product. Use the theory of heat kernel operators one can deduce the Hodge
decomposition A k = Γ(X ,

∧k T ∗X) = ker(∆dR)⊕ im(d)⊕ im(d∗).

For a semi-positive generalized Laplacian H of Laplace type (for example, ∆dR), by
Proposition 3.5.8 we can assume the non-zero numbers in the set of eigenvalues of H are
sorted by ≤ (counted with multiplicity):

0 < λ1 ≤ λ2 ≤ ·· · .

Consider the theta series attached to this sequence

θH(t) := ∑
i≥1

e−tλi ,

we conclude that θH(t) converges for t > 0 and induces a Selberg zeta function

ζH(s) := ∑
i≥1

1
λ s

i
=

1
Γ(s)

∫ ∞

0
θH(t)ts−1dt.

This function converges for Re(s) sufficiently large and has a meromorphic continuation
to the whole complex plane.
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Formally, differentiate term by term we have

ζ ′H(0) =−∑
i≥1

logλi =− log("determinant" of H),

so we can define the determinant of H as det(H) := e−ζ ′H (0). It should be noted that this
value is always infinite, so we need to regularize it into a finite number.

Proposition 3.5.10. The limit

lim
ε→0

(∫ ∞

ε
θH(t)

dt
t
+(γe + logε) ·ζH(0)

)
exists, where γe is the Euler constant. This is called the regularization of ζ ′H(0), also
denoted by ζ ′H(0).

3.6 Metrics on the Determinant of Cohomology

3.7 Arithmetic Riemann-Roch Theorem
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